Chemical Weathering

Han Disc
Han (221-206 BC)

Weathering is a natural process that breaks down all minerals and rocks and eventually transform them into soil. Without weathering there will be only rocks making plants, animals and life as we know it impossible. Such transformation leaves recognizable marks on the jade surface of burial jades as they underwent the same process similar to other minerals and rocks in a natural environment.  Under a 40X magnification, these weathering marks including amorphous silicate, phyllocilicate clay, dissolution of nephrite crystals, and formation of iron oxides and iron hydroxides can be clearly seen as demonstrated  on the Han disc magnified below.

Chemical weathering in relation to burial nephrite jade.

Weathering can be divided into physical  and chemical weathering. Physical weathering refers to rock breaking apart due to natural forces like exposure to wind and water erosion, climatic heat expansion and contraction, shear force of ice and glacial into exfoliation and so on. Chemical weathering is chemical changes of the minerals in the rocks, induced by surface water, oxygen and carbon dioxide of the atmosphere.  The result is the break down of minerals chemically and structurally, releasing cations into the environment, and eventually transform rocks into soil.  All rocks contain more than one mineral. All minerals form crystal except when they are in the amorphous phase. A mineral is in amorphous phase when it maintains its chemical composition, but has lost its shape and crystal form. It is often seen in the burial jades as the whitish greyish pasty like material on the jade surface, often mistakenly referred to as calcification.  Water is the main medium and the main driving force for chemical weathering.  Also important are other variables like a hot, cold, dry or wet climate, the composition of parent minerals with different chemicals and crystal structures, and biological changes bring in by surrounding plants, animals and bacteria in the environment. All these make chemical weathering a very complex process. Chemical weathering is a well studied science in Geology, Geochemistry, Mineralogy, Clay Mineral studies, archeology and Environmental Science. Scientific papers on the subject come from scholars around the world. Changes seen on the burial jade surface so far have eluded explanation which underlies the reason why fake burial jades are so profusely produced.  Since most burial jades are nephrite, an amphibole, knowing chemical weathering through these scientific papers on the mafic and felsic rocks; rocks and minerals that are iron rich silicates, provides a path for an authentication solution. Information comes mainly from clay mineral and geology scientific literatures. References are listed at the end of this segment.

The first stage of Chemical weathering and the formation of amorphous silicate.

Chemical weathering can be divided in two stages. Both stages can occur at the same time on the same surface of a mineral rock at various degree due to differences on the surface in drainage, micro pores size, and weakness points on the mineral, namely joints and cracks that can affect the chemical weathering effect. The mineral surface has different points of high energy, points where water flows through or retained. In burial jades high energy points are where the jade surface turns or drops off, the recesses and grooves from lines and cuts, and drill holes on the jade piece.  These are areas where most weathering effects take place. Dissolution and leaching is the first stage of weathering. As water comes into contact of the mineral surface, it reacts with the chemical by replacing the cations, and in nephrite, calcium, magnesium and iron, that leach out in a higher ratio than the silicate. The result is the loss of cations and the fibrous nephrite crystals lose their shape and become amorphous. Amorphous silicate has a whitish to greyish color and appears pasty on the jade surface. A protonated surface about 10Å is formed. This is the surface where protonation, in other word the chemical reaction, takes place. Of significance is the protonated surface cannot be cleaned by ultrasound treatment, leaving a permanent mark on the jade surface, and a clue for authentication. (Y. Noack, F. Colin, D. Nahon, J. Delvigne, and L. Michaux. Secondary-Mineral formation during Natural weathering of pyroxene: review and thermodynamic approach. American Journal of Science, Vol. 293, February 1993. P. 111 – 134.) Extensive amorphous silicate formation can be seen on the Zhou (1046 – 256 BCE) jade man shown below. Notice the more heavy concentration of the whitish amorphous silicate beside the raised lines. The lines are positive relieves, formed by cutting down on both sides turning both sides into depressed grooves that retain water. Also when the jade piece was made, it creates fine granules from the cutting and drilling.  It is well known in the scientific community that by simply breaking the mineral sample, these fine granules form. ( Mechanism of pyroxene and amphibole weathering – 1, Experimental studies of iron free minerals. Jacques Schotts, Robert A Berner and E Lennert Sjoberg; Geochimica et Comochimica Acta Vol.45, pp. 2123 -2135. 1981) These fine granules when meet with water, go into rapid dissolution skewing the scientific data. To clean them requires washing with a Hydrogen fluoride + Sulfuric acid solution. At the time the jade was made, because of the cutting and drilling, the cut lines and drill holes  accumulate a large amount of such granules. These depressions also accumulate water and are high energy points. With more water available, rapid dissolution of these fine granules takes place, resulting in high concentration of the amorphous silicate  in these depressions giving them a whitish delineated appearance well known in burial jades . The large amount of fine granules and water accumulation in drill holes also result in large amount of substrate inside the drill hole and formation of unusual secondary mineral products as we should see later.  This accumulation of fine granules in the recess areas also can be seen on newly made jade pieces, and the higher concentration of the amorphous silicate in recess areas is greatly imitated by the fake jade makers. Notice also the multiple raised relieves on the surface of the jade man, a phenomena that will be discussed later.

Weathering in the surface micro pores, a reason for color change in burial jades. 

Weathering occurs on the surface as well as in the micro pore – micro crack system. These micro cracks measure 1µm in width, and as weathering continues lens shape etch pits form parallel to the c axis of the crystal.  As more etch pits are formed, they coalesce and the micro pores enlarge widen up to 6µm. Changes on the surface is limited by water penetration, only to 0.05 µm to 0.12 µm, and sets a limit on weathering effect on the surface. Exception to this is in areas of large cracks and joints. These weaknesses allow water to penetrate deeper into the mineral as far as these cracks and joints extend. Clay minerals of  the smectite group forms. Because of the size of the micro pores, transformation is at the molecular level, by solid state topotactic mechanism, pesudomorph from nephrite to smectite. Pseudomorph is when a mineral changes  into another mineral chemically and physically without changing its shape. Smectite is a clay mineral group with at least 15 members. Their color vary from white to green, dark green close to black, yellow and brown. A yellow clayey plasma is formed.  As weathering advances, parent mineral disappears inside the etch pits and voids lined by ferruginous material known as microboxworks form. Boxworks, also call Speleothem, are mineral structure formations when mineral erodes away leaving veins of mother mineral.  Boxworks are found often in caves as seen in the picture below from the Elk Room, Wind Cave South Dakota. (Picture from the U S Park Service).  As microboxworks

Speleothem-Boxwork-1
The Elk Room Boxwork

form inside the micropores, they can only seen by electron microscopy. Ferruginous projections called pendants extend from the microboxworks into the void. (MICHAEL ANTHONY VELBEL. WEATHERING OF HORNBLENDE TO FERRUGINOUS PRODUCTS BY A DISSOLUTION-REPRECIPITATION MECHANISM: PETROGRAPHY AND STOICHIOMETRY. Geochimica et Cosmochimica Acta Volume 45, Issue 11, November 1981, Pages 2123-2135.)These microboxwork and pendants exhibit the phenomenon of birefringence, meaning reflective light  shine on them can only be seen at a certain angle. Several material exhibit birefringence and crystal is one of them. The specific of birefringence can be used to identify materials especially among minerals. The ferruginous material of the microboxwork are goethite, kaolinite and gibbsite. Smectite can weather into kaolinite. Both are clay minerals and such transformation occurs frequently. Hematite is also frequently found with amphibole weathering depending on the location in the world the parent mineral is from. Hematite is an iron oxide and has color of black, silvery grey, reddish brown and red. Goethite is an iron hydroxide and has color of black, brown, reddish brown and yellow. Kaolinite is a clay mineral with color of white to pale cream and yellow. Smectite has multiple members and they rang from yellow, brown, green and even black, depending on the amount of iron available. These weathering secondary products  form inside the micropores and cracks of the nephrite, giving about 0.1 mm of the nephrite surface the color of brown, reddish brown yellow and may even black, the patina color of the burial jades. The Han beast on the left, and the Song frog on the right below have lost their original nephrite color and assume the color of the clay mineral and the iron oxyhydroxide inside their surface micro pores. Chemical weathering is the reason burial jades have such color. Understanding the process is key to identify fakes.  When the burial jade pieces are looked at under the microscope obliquely, the color changes from the secondary products can be seen just underneath the surface in the micro pore system, whereas fake jades are dyed from top and remain on the surface.

Secondary products can be seen spilling out from the micro pores to form pin point dots on the jade surface as on the magnified picture below on the curve surface of the Song frog, more noticeable on the right lower corner of the picture.

Song frog
Amorphous silicate spilling out of micropores.

Chemical weathering on the nephrite jade surface and formation of ferruginous crust and phyllosilicate clay crystals.

Other than inside the micro pore system, dissolution and leaching also occur on the jade surface resulting in etch pits formation as nephrite crystals  dissolve. These pits are shallow due to the limit of water penetration. As in the micropores, when more etch pits are formed, they coalesce and enlarge. Amorphous silicate forms from leaching fills these etch pits. The surface of a Hongshan (4700 -2900 BCE) zoomorphic bird woman shown below demonstrates such effect. Notice that on the upper and lower part of the magnified picture on the right shows formation of phyllosilicate which has a yellowish shinny and grease like color with a reddish tint, an indication iron oxyhydroxide also present as weathering advances into the phyllosilicate / oxyhydroxide stage.  Phyllosilicates are clay minerals which are silicates with a  sheet like crystal structure. They can be divided into 1:1 or 2:1 clay, meaning, to put it simply, is that their structure can be 2 sheets which the Kaolin group belongs to, or 3 sheets which the smectite group belongs to. Recognizing phyllosillicate is important since they are frequently found on the surface of the burial jades.

With time and availability of water and oxygen in the enviroment, smectite forms a brown to yellow pasty plasma on the surface. This plasma like material forms a thin  filament crust on top. According to a Polish study, this filament measures 20-30 µm, about 0.2 – 0.3 mm. Because it is transparent, the presence of this filament is hard to recognize till you come across some of the jade pieces that were dropped in the past resulting in cracking of this crust. On one Liangzhgu disc (3400-2250 BC) with a diameter of 2 inches, such filament can be demonstrated. Like all Liangzhu discs, this disc  is carved only on one side.  The underside is flat. On the front, it slopes down abrutly when it comes to the side making a very sharp edge. Under the microscope, cracks can be seen on a whitish yellowish crust filament  that covers the whole jade piece. A small piece of the filament is lost, and through this window, the real jade surface can now be seen (see pictures below). Without the cracks, even under the microscope, it is difficult to recognize this crusty filament. The presence of this filament makes the jade surface looks like it has depth, as if it is under water when look through the microscope.

Natural nephrite obtain from an alluvial mine of dried up river bed are encased in a rock like crust formed from a process called encrustation pseudomorph. ( Picture below).

allevial nephrite
Partial removal of encasing rock to show the nephrite

As soon as  jade pieces were buried inside a tomb, this encrustation pseudomorph process began. This crust takes hundreds of thousand years to develop, at an estimate 50 thousand years for half a cm.  The longest burying time for Chinese burial jade is 7000 years. So the changes observed on the burial jade surface comes only from the  early stage of this encrustation pseudomorph process as the buried jade forming the crust.  Changes in association with this process occur. With available iron, Goethite/Hematite inclusion form inside the filament as seen on the back of this Zhou jade man below. These inclusions on the burial jade surface are superficial, form within the

smectite plasma filament when free iron from  leaching is available.  Black Hematite inclusions are also seen in this Han thin dragon below. Black inclusion are more

frequently found than red inclusions. Below is a Zhou jade bird with red inclusions within the plasma layer on his crown. Red inclusions are also likely hematite.

With progression of the weathering process, sheet like phyllocate (clay crystal), forms on the surface of the jade. They are more solid looking and less grease like as in the amorphous sillicate. These sheet like structures layer out and can have a reddish tint to solid reddish color indicating the presence of iron as seen on the Liangzhu (3400 – 2250 BC) disc below.  Notice the demarcation of the phyosillicate (clay crystal) coming down from the upper left corner on the magnified photograph.

Some crystal form a vein like structure as on this Hongshan (4700 -2900 BC)  pig dragon beast shown below. These are phyllosilicate clay crystals form on the surface. The formation of this uneven layer makes the surface appear it has holes on them, as

fake jade makers sand blast the surface to imitate. To appreciate this raised phyllosilicate layer the jade piece needs to be tilted to look at the surface obliquely. Only obliquely that many changes on the surface can be seen. The Xia (2700-1600 BCE) axe shown below has indistinct carvings on the surface easily contributed to aging as the cause of the loss of  image clarity. Under the microscope, the reason becomes clear. The whole surface is under cover by a hard crust of clay crystal material.  The raised nature of this clay

phyllosilicate crystal crust can be better seen if the axe is look at obliquely as below.

Xia axe
Xia axe oblique view

The brownish discoloration seen on the axe is due to iron presentation as black specs of hematite inclusions and silvery metal deposits are seen under the microscope (pictures below). The hair like patch on the right upper corner is not an artifact, as it can be found

Xia axe
Hematite formation and hair like clay crystal.

in several other burial jade pieces.  The Xia bracelet shown below also has such hair like crystal structures.

Xia bracelet
Xia bracelet with hair like clay crystal
IMG_1742 (4)
Hair like clay crystal

The exact nature of this structure is unclear. The closest resemblance is the illite crystal, a non expandable clay.

illite
Illite crystal, a non expanding clay

http://blogs.egu.eu/divisions/sss/files/2014/09/4f97b5df8c8da.jpg

Another possibility is Byssolite, an Amphibole Supergroup, a variation of Actinolite.

https://www.mindat.org/photo-176154.html

The presence of clay mineral on the surface of burial jades as a secondary product of chemical weathering, results in a well known phenomenon. It has long been known that some of the burial jades process an odor commonly referred to as the ‘tomb odor’. The odor does not come from the tomb, but from the clay produced on the jade. Clay is one of the few minerals that give out an odor. https://www.scientificamerican.com/article/the-odors-of-minerals/   As clay material is formed on the surface of burial jades from chemical weathering, under certain conditions, such clay will give out an odor that jade collectors are so familiar with, and so mistaken with its origin.

Iron oxide mineral crystal formation on jade surface and in drill holes.

The clay phyllosilicate crystals are greyish in color and sheet like. They are however not the only product from chemical weathering as ferruginous materials are also produced from the weathering process, resulting in iron oxide and hydroxide minerals on the burial jade surface.  Below is a Liangzhu plaque covered by a red crust, an indication of

Liangzhu plaque)
Liangzhu plaque

iron. ( As a side note, this plaque is very important in Chinese history, as it can easily link the Hongshan and the Liangzhu culture to the Shang culture, integrating the Chinese culture into a truly 7,000 years one linage descence.)  Under the microscope the red mineral forms crystal comparable to natural Hematite mineral as seen on a sample

Liangzhu plaque
Liangzhu plaque with red crystal formation, most likely Hematite.

below. (from Sandatlas http://www.sandatlas.org/hematite/ ) 

hematite Morocco 8 cm
Natural Hematite

Natural Hematite has silvery metal deposits shown clearly in the middle of the sample above. These type of metal deposits are also frequently found on surface of burial jades. The Liangzhu bead below shows such deposit on the upper right of the magnified

photo. These metal deposits appear as droplets, and they all show the birefringence effect, seen only at a certain angle, making finding them a difficult task at time. Below is a Zhou comb that also has the  metal droplets on its surface, seen at the center of the magnified view below .

Metal droplets in association with the Hematite formation is not the only metallic finding on the burial jade surface. Small pin point like metallic shine with a bright golden yellow color are often seen on Han or older pieces. Unlike the droplets, which appear at random, these metal shines always appear in a line, be it curve or straight, and like the droplets, they also exhibit the birefringence effect. The presence of such lines can be demonstrated on the Hongshan beast below, seen in the middle of the magnified view.

This type of metallic line formation can also seen on the Han beast below.  The exact

nature of these metallic points line is uncertain. However since they always appear in a line, they probably are related to the cleavages of the nephrite jade.

As weathering products form on the jade surface they crystalize. Within the drill holes due to the presence of large amount of fine granules from the drilling, and the larger amount of water available, result in a large amount of ferruginous substrate inside a cave like space, and needle like Hematite crystal forms. Below is a Hongshan bird with a worm on its head. Within the drill hole, needle Hematite crystal forms.  This is not the

109-2
Hongshan bird with worm on head
Hongshan bird 109-1 and 2needle hematite crystal 1
Needle Hematite crystal under microscope in drill hole.

only Hongshan piece that has such crystal formation, indicating such crystals can be found in many genuine Hongshan pieces. Other crystal formations on the surface are more difficult to understand, like on this Hongshan birdman below.

Effect of cleaning on jade surface.

Chinese jade collectors have always divided collectable jades into unearthed jades (出土玉), and jades from hereditary (傳世玉),  It is difficult to understand why should there be such a division and what puts them apart, until the jades are looked at under the microscope. The unearthed ones retain all the markings from weathering, whereas the hereditary ones were cleaned by previous owners. What can be cleaned on the surface are the clay and ferruginous crust. Once this crust is removed, the protonated layer where the chemical reaction of the weathering process took place is exposed. The protonated layer cannot be clean even with ultra sound cleaning.  Also the patina color of the burial jade, caused by the clay and ferruginous material produced inside the surface micro pores cannot be cleaned. Below is a Xia mask that has been cleaned in the

past with removal of the clay and ferruginous crust. The patina which results from the clay and ferruginous material inside the surface micro pores remains unchanged. Also note the protonated layer on the nose. In spite of the cleaning, remanents of the crust are frequently found, left behind  in recess or obscure areas, as seen on the left side of the nose and the lip of the mask. Remanent of the crust is more pronounce on a thoroughly cleaned Han beast below, left behind notably on its left tail.   Removing the crust also

exposes other markings from weathering as seen on the Han cicada below. Notice the loss of  mineral crystal material on its right side of its head, both eyes and back, from the leaching and dissolution stage of weathering, resulting in shallow etch pits as if a small piece of the skin was removed, and formation of the protonated layer where the chemical reaction took place (on the magnified view).  

How much burial jades can be cleaned, and whether they can be returned to their original nephrite luster is controversial. The National Museum in Beijing China has done just that showing several of their burial jades pieces returned to their original nephrite color. This promptly leads to Western archeological communities criticism, that such feat is impossible and suspicion that  these are newly made fakes. The patina color change is due to the chemical weathering effects on the surface of the burial jade. Due to the limit of water penetration, such effect only limits to the surface 0.1 mm or so. It is therefore possible to grind off this topical 0.1 mm and the jade should return to its original nephrite color.  However by doing so will also eliminate much of the details of the surface carving. The value of the burial jades lies not in the nephrite, but in the art and spirit of the carving that reflects the thinking and culture of the carvers, people of the period of time. Any damage done to the carving will result in great loss. Further more, markings left from the chemical weathering are the strongest proof, and may be the only proof that the jade piece is authentic.  Removing these markings by grinding the surface will render the piece losing all its identity, and hence no difference from a piece made nowadays.

Raised relief on nephrite jade artifact, what it is and confirmation of chemical weathering on Nephrite jades.

The only scientific article exploring burial nephrite jade with regard to geologic mineral changes is “Raised relief on nephrite jade artifacts: observations, explanations and implications. Journal of Arcaeological Science, 40 (2013) 943-954.” by Frederick A. Cook. This is truly an excellent pioneer work in this field that deserves all the respects given to a true insight into the chemical weathering on burial jades. In this article Professor Cook investigates the notion that raised relief can be found on the surface of burial nephrite jades, and the presence of such relief if proven genuine, can be used to confirm the authenticity of the artifact.  The article provides confirmation to observations already discussed in this writing. However it also posts other questions that are worth looking into.  The article divides the raise relief into two categories.  One is a raised crystal, often single, but can be in groups.  The other is a patch or areas higher and above the observed jade surface.  These patches contain no raised crystal as in the other group, but are made up with fibrous normal nephrite crystals. Judging from the pictures of the artifact specimens in the article, one can easily see that all artifacts except number 4 the Neolithic Bi disc, and number 6 the circular bowl with a stand, the surface has been  previously cleaned. (One side note is that judging from the bird headed hunter on the circular bowl, as compared to the bird headed people on the Han disc posted at the beginning of this chemical weathering writing, the circular bowl should be a Han piece and not Tang.) The patches being referred to as raised relief appear to be the remnant of the clay phyllosilicate crust left behind after the previous cleaning. The crust is above the surface, but certainly is not raised, a reason why underneath the patch normal fibrous nephrite crystals are found.  Of some interest is specimen number 4, the Neolithic Bi Disc. This disc was not cleaned, and phyllosilicate clay on the surface is obvious, easily seen especially on the magnified view. Part of the disc was under cover from another disc. As a result less water was available on the part of the disc under cover, and that part of the disc has far less weathering effect, and hence far less clay phyllosilicate on the covered part of the disc surface, demonstrating the importance of water in chemical weathering. 

Of the two groups, group one has the true raised relief, jades with a crystal on and above the nephrite jade surface.  Raised relief are not frequently found, only may be on 5% of the burial jades.  When it occurs, they usually are multiple, as seen on the picture of specimen 6 in the Raised Relief article, the circular bowl with a stand. Also by scrolling back to the top third figure of this writing, the Zhou jade man, one can see the raised relief on the surface are also multiple. Multiplicity of the raised relief is also the case on the three Hongshan jade pieces shown below.  The first one is a squatting monster man

 with its raised relief magnified shown below. Notice the similarity of the raised relief on the monster man  and those found on the circular bowl on figure 6. 

The next is a C-dragon with raised relief as shown below.  When comparing the raised relief on the C-dragon and the monster man, one should put into consideration that the C- dragon measures 15 cm in length, whereas the monster man is only 4 cm in height. The size of the raised relief  on the two pieces may be comparable. There are  however differences between the two types of raised relieves. Those on the c-dragon are black 

C-dragon with raised relief.
C-dragon with multiple raised relief.

IMG_1793-1b

with silvery metal deposit on many of them, whereas  those on the monster man are lighter in color with no metal deposit found. The third raised relief example is on a squatting beast shown below. The raised relief on the beast are also different from the 

Squatting beast raised reliefe

Squatting beast with raised relief and magnified view.

raised relief on the other two Hongshan pieces. Unlike those on the other two that are crystals in a cluster, those on the squatting beast are individual crystals. They also differ in texture, smooth  with a Smokey semi transparent color and no metal deposit, a resemblance to Smoke Quartz. The differences between the raised relief on all three pieces indicate that they are probably different mineral crystals. There may be more than one kind of crystal forming raised relief.

The raised relief was thoroughly investigated scientifically in the article. Thin slides made from specimen 6, the bowl with stand, were chosen for petrographic microscopy and electron microprobe examination and analysis.  The raised relief selected is a single pyroxene crystal, a diopside on the jade surface.  There are other diopside crystals  found, all at or near the surface of the bowl. The assumption is that these pyroxene crystals are formed during the nephrite metamorphic formation. As the nephrite was pushed from the crust of the earth to the surface, hydrothermal alteration continues the alteration of the diopside to tremolite.  Since the pyroxene was present during metamorphism when the nephrite was formed, it has to be inside the nephrite before the jade piece was carved. If such is the case, the diopside should be found any where inside the nephrite, and should not only be at or near the surface. One interesting finding is that the red brown color on the surface of the bowl is limited to 0.1-0.2 mm of the surface, a finding consistent with the changes result from chemical weathering inside the surface micro pores due to the  limit of water penetration as already discussed.

The raised relief is a large crystal, in this case a diopside, intersecting the surface, and surrounded by fibrous nephrite crystals. The nephrite crystals are in two forms, a coarse altered form found immediate to the diopside crystal, which in turn are surrounded by the more fine fibrous tremolite crystals. It is felt that the diopside crystal is altering into tremolite crystals, as in hydrothermal alteration, resulting in the tremolite fibrous mass. The diopside crystal shows twinning with  coarse tremolite veins in between. Of more revealing are the electron microprobe analysis. (figure 11-12, table 2) Other than the diopside crystal and the fine and coarse tremolite crystals, hydrous phase material and chlorite are found. Because the  hydrous phase materials  are high in aluminum and magnesium it is determined that the hydrous materials are clay minerals, and chlorite will eventually alter into it. Of interest to note is that the altered tremolite, the hydrous phase material, and the chlorite are all high in iron oxide (FeO). The conclusion is that the clay is expansive. The expansion of the clay increases the volume resulting the diopside being pushed to the jade surface forming the raised relief. This conclusion is reasonable. However it does post some questions. The pushing due to the expansion of the clay is mechanical, and not gravitational dependent. Further more when the jades were buried, they were placed face up  or down or side way. So the diopside crystal can be pushed in any direction and not necessary towards the surface. This assumption cannot explain why all the raised relief are at the surface of the jade. Also a well known fact about the expansive clay is that found around building foundations. The expansion can cause cracking of the foundations leading to crumbling of the building. Clay expansion within the jade should create large cracks around the diopside crystal.  Micro cracks sre found in the round bowl specimen. Micro cracks are known to form during chemical weathering. The diameter of the micro pores on the nephrite are 1µ – 2 µ. Leaching and dissolution during chemical weathering leads to enlargement of the micro pores to 5µ and formation of micro cracks. Expansion and pushing should create much larger cracks, and with thousands of years of burial and pushing, may even lead to dislodgment of the diopside leaving behind a void. Such are not found leaving more questions to the  assumption of clay expansion theory.

Excellent studies were done on the bowl with a stand specimen. Clearly the nephrite crystals around the diopside are altering. The assumption here is the diopside is altering into nephrite as in the metamorphic process under  a hydrothermal effect. Hydrothermal activity in China concentrates in the south west. The rest of the country where the nephrite jades were buried has minimal hydrothermal activity especially in the north east where the Hongshan jades were buried, making encountering hydrothermal fluid highly unlikely. There is no doubt however that the nephrite crystals around the diopside are under going alternation.  One other explanation is that the raised relief is a pseudomorph process. Pseudomorph takes place in surface temperature and pressure and it can also exhibit twinning. The tremolite crystals are altering into diopside. In other word all raised relief are alternation pseudomorphs after Tremolite. Pseudomorph alteration also explains why all raised relief are found at the surface. Two examples of pseudomorphs are shown below for comparison  to the burial jade raise relief, a limonite  pseudomorph after Siderite,

Limonite pseudomorph after Siderite
Limonite pseudomorph after Siderite

http://www.johnbetts-fineminerals.com/jhbnyc/mineralmuseum/picshow.php?id=57515

and  a copper pseudomorph after aragonite. (picture from James St John, Wikipedia.) Regardless of what the raised relieves are, its presence should confirm the authenticity of the burial jade.

Native_copper_pseudomorph_after_aragonite,_by James St John Wakepedia,western_Bolivia
copper pseudomorph after aragonite. (From James St John, Wikipedia)

The article studies confirm nephrite chemical weathering secondary products.  Chlorite has been reported, and it eventually alters into clay minerals Smectite and Kaolinite. The secondary products have also been described as ferruginous because of the high iron content. Iron secondary minerals are iron oxide Hematite, and iron hydroxide Goethite.    MICHAEL ANTHONY VELBEL. WEATHERING OF HORNBLENDE TO FERRUGINOUS PRODUCTS BY A DISSOLUTION-REPRECIPITATION MECHANISM: PETROGRAPHY AND STOICHIOMETRY. Geochimica et Cosmochimica Acta Volume 45, Issue 11, November 1981, Pages 2123-2135.

References:-

1. Y. Noack, F. Colin, D. Nahon, J. Delvigne, and L. Michaux. Secondary-Mineral formation during Natural weathering of pyroxene: review and thermodynamic approach. American Journal of Science, Vol. 293, February 1993. P. 111 – 134.

2. M. Rozalen , M.E. Ramos F. Gervilla T. Kerestedjian S. Fiore F.J. Huertas .Dissolution study of tremolite and anthophyllite: pH effect on the reaction kinetics. Applied Geochemistry 49 (2014) 46-56

3. J. Cuadros. Clay crystal-chemical adaptability and transformation mechanisms. Clay minerals, (2012)47, 147-164.

4. D. Proust, J. Caillaud, C. Fontaine. Clay minerals in early Amphibole weathering: Tri- to Dioctahedral sequence as a function of crystallation sites in the Amphibole. The Clay Minerals Society, 2006.

5. D. Proust. Amphibole Weathering in a glaucophane-schist. Clay Mineral (1985) 20, 161-170

6. Aleksandra Daković, So this actually is wellAlessio Langella, and George E. Christidis. Clay crystal-chemical adaptability and transformation mechanisms. Clay Minerals, March 2015, v. 50, p. i-ii

7. JACQUES SCHOTT~, ROBERT A. BERNER and E. LENNART SJOHERGS. Mechanism of pyroxene and amphibole weathering-I. Experimental studies of iron-free minerals. Geochimica et Cosmochimica Acta Volume 45, Issue 11, November 1981, Pages 2123-2135

8. Robert A. Berner and Jacques Schott. Mechanism of pyroxene and amphibole weathering; II, Observations of soil grains. Am J Sci October 1, 1982 282:1214-1231; doi:10.2475/ajs.282.8.1214 

9. Frederick A. Cook. Raised relief on nephrite jade artifacts: observations, explanations and implications. Journal of Arcaeological Science, 40 (2013) 943-954.

10. Mariola Marszałek, Zofia Alexandrowicz, and Grzegorz Rzepa. Composition of weathering crusts on sandstones from natural outcrops and architectonic elements in an urban environment. Environ Sci Pollut Res Int. 2014; 21: 14023–14036.

11. MICHAEL ANTHONY VELBEL. WEATHERING OF HORNBLENDE TO FERRUGINOUS PRODUCTS BY A DISSOLUTION-REPRECIPITATION MECHANISM: PETROGRAPHY AND STOICHIOMETRY. Geochimica et Cosmochimica Acta Volume 45, Issue 11, November 1981, Pages 2123-2135.

12. M. J . WILSON. Weathering of the primary rock-forming minerals: processes, products and rates. Clay Minerals (2004) 39, 233–266.

13. Jacques Schott. X-ray photoelectron studies of the mechanism of iron silicate dissolution during weathering. Geochimica et Cosmochimica Acta
Volume 47, Issue 12, December 1983, Pages 2233-2240.

Looking through the Hongshan Buried Nephrite, from authentication to Zoomorphic, Therianthrope, and the Hongshan Cultural Beliefs.

147-1
Hongshan Hook Cloud Plaque

 

Introduction

As the world’s oldest continuous civilization, China’s history stretches back more than 5,000 years to the Neolithic time. Recent advances in Archeologic Science in China have also shone a light on the culture as it has never. As a civilization, jade has always played an important part ever since the dawn of Chinese history, revered as mysterious and precious. Carvers often express their religious beliefs in an artistic form, to adorn kings, queens, nobles, and influential leaders of the society and buried with them at their death. Since jadeite only came into China after the Ming Dynasty, Jade in China before the Ming Dynasty was always nephrite. As a mineral, nephrite can last thousands of years and are better preserved as an artifact than wood and may even better than clay wares and metal. To look into the society of the time, especially into their religious beliefs, is no better than through the buried nephrite. However, buried nephrite of Chinese antiquity is notorious with rampant forgeries to the point that fakes and genuine buried nephrites may not be distinguishable. Unfortunately, even the Chinese government may not be helpful in this regard. On the internet, imageries are near 100% fake jades. Self-proclaimed reference books post fake jade photos. Of the three Chinese Neolithic jade cultures, Hongshan (4700-2900 BC), Lingjiatan (3750-3000 BC), and Liangzhu (3400-2250 BC), Hongshan should be considered the earliest jade culture. But Hongshan jade is also the most chaotic. With so many fake Hongshan jade flooded the market, ironically, even the forgery carvers themselves may not have seen an authentic piece of Hongshan jade. As a result, fake Hongshan jade may not be a copy of the original, but merely something out of the fake jade carver’s imaginary. The tragic consequence is people, including the Chinese themselves, are unable to see the real face of the Chinese civilization.

The Hongshan archeology sites were discovered in the early 1920s. Between 1983 and 2003, the Liaoning Institute of Cultural Relics and Archaeology undertook a series of extensive excavations of the sites. Other than many significant archeologic artifacts, 100 pieces of jade were obtained. These 100 pieces also include those damaged and incomplete. Some scholars estimate that 90% of the jade artifacts were removed illegally before the official excavations. But if you take 10% is 100 pieces, the total number of Hongshan jade is only 1000. Compare that with the hundreds of thousands and may even be a million fake Hongshan jade on the market today, one can easily see genuine Hongshan jade is a rarity. Hongshan culture, despite the fact being Neolithic, obtained high artistic levels in their jade carvings, even in today’s standard. Replacing such artistic achievement by the distasteful jade carvings of today distort not only the origin of the Chinese culture but also disrespectful for the cultural heritage of their ancestors.

Because of the rampant forgery, it is imperative that the Hongshan jade pieces presented here must be genuine, and the proof of such has to be in the authentication. Traditional authentication is comparing the jade piece to a known unearth relic. However, because the Hongshan jade obtained from the excavation is only 10%, it cannot be representative, and comparing the jade piece to the excavated ones is meaningless. Authentication must rely on the recognition of tool marks and color change on the jade surface. It is especially important to the color change that results from the weathering process of the mineral nephrite (see the article Chemical Weathering on this web site). The method of authentication will be presented. Only with some certainty that the jade pieces are genuine, that looking through them into the art and beliefs of the Hongshan society 5,000 years ago can make sense.

 

Hongshan Conspectus

Hongshan culture (4700BCE-2900BCE) was one of the Neolithic cultures in North-Eastern China, stretching north from southwestern Inner Mongolia, south to northern Heibei, and East to Liaoning. The name that applies to this vast area includes over one thousand village archeology sites of the same culture. In 1908 the Japanese archeologist Ryuzo Torii first discovered the site. Limited excavations were carried out by French and Japanese areological teams in the 1930s. It was not until 1983 to 2003 that the Liaoning Institute of Cultural Relics and Archaeology undertook a series of extensive excavations. It becomes known that the Hongshan culture was based on Xinglongwa Culture and Zhaobaogou Culture and was the most advanced culture in northeast China of the time, advanced from hunting and gathering into farming communities. Stone tools were used for hunting, fishing, farming, pottery making, as well as for jade carving. The most significant finds were a goddess temple with a life-size painted head of the goddess, round sacrificial altars, and square stone tombs. Within the graves, a variety of jade articles were found as sole buried objects with no other artifacts such as pottery or stone tools. Jade, as the only buried objects, indicated that they were objects of religious belief rather than objects of earthly value. Hongshan produced jade objects of varies form. Most notably were the C-dragons, pig dragons, beast in human form, animals, insects, and birds, with the more abstract form the hooked cloud plaque. Despite being a Neolithic culture, Hongshan produced many of the jade pieces with high artistic levels comparable even in today’s standard.

Hongshan culture had developed highly sophisticated pottery made with metal molds from fine red clay decorated with black geometric patterns. Pottery was mainly bowls, plates, pots, and cups for daily use. Among the pottery was a bottomless round tube that could not carry food and drinks, making it an unlikely utensil object (Figure 1). These tubes were found in large tombs lining the sides of the grave. The

Bottomless tube
Figure 1. The clay bottomless tube

geometric black paint pattern on the tubs was also unique, unlike those on other pottery, indicating that these tubes most likely had a religious function. Six female clay figurines in pregnancy were also found, linking the culture to fertility worship (Figure 2). Such

Pregnant woman clay figerine.
Figure 2. Pregnant woman clay figurine.

religious beliefs in pregnancy and the bottomless tube, also are reflected firmly in many Hongshan jade pieces, as we shall see later.

 

Authentication of the Hongshan Jade

 

The most notable and well known about Hongshan culture is its jade, with the C-dragon and the pig dragon as the most representative. Others are animal forms of beast, birds, tortoise, the horseshoes, and the hook cloud plaques. Elizabeth Childs-Johnson’s paper “Jades of the Hongshan culture: the dragon and fertility cult worship.” https://www.persee.fr/doc/arasi_0004-3958_1991_num_46_1_1303 listed all the jade pieces from the official excavation with drawings and can be regarded as the most reliable reference source in the study of the Hongshan jades. These jades have a beauty of its own and can truly represent the culture on its own right. Unfortunately, because 90% of the Hongshan jades were lost before the excavation, the excavated jades can only give a glimpse of its true nature.

Most of the Hongshan jades are small, ranging from 3 cm to 8cm in length. Larger pieces can be as long as 18cm, with some hook cloud plaque as long as 28cm. The size of the Hongshan jades is similar to Chinese jades from other periods before the Qing Dynasty (1644- 1912 AD). To understand this size uniformity, one has first to look at Hetian. Jade rough or raw jade has been coming from Hetian since the Shang Dynasty (1600 BCE – 1046 BCE). Hetian jades are from pebbles in the stream and small boulders from riverbeds. These pebbles and boulders are small in size, and hence the size of the jade rough limited the size of the jade pieces carved. It was not until the early Qing Dynasty that jade veins in the mountain were mined. For sure, Hongshan jade rough did not come from Hetian. It is also highly unlikely that Hongshan people were able to mine jade veins in the mountain. The size of the Hongshan jade pieces indicates that the source of the jade rough should be similar and was also from streams and riverbeds. For such reason, any Hongshan jade bigger than 30cm should be highly suspicious for modern day forgery. Traditionally comparing the shape and style of the carving of a jade piece to a known unearthed piece is the first step of authentication. However, since the majority of the Hongshan jades are lost, the unearth pieces may not represent the culture. Authentication here will look at tool marks and color change on the jade surface. Such color change is the result of secondary products formation from chemical weathering when the jade was buried.

Tool marks identification

                   The most important thing about tool marks on the Hongshan jades is not the tool marks, but rather the lack of it. In 2004 the British Museum published a paper “The identification of carving techniques on Chinese jade, Margaret Sax, Nigel D. Meek, Carol Michaelson, Andrew P. Middleton; Journal of Archaeological Science 31 (2004) 1413-1428”. The authors examined six pieces of Chinese jades that belonged to the British Museum for carving tool marks. Positive molds were made for any tool marks found under a microscope. The molds were then examined under an electron microscope to determine the carving technique of the jades. Of the six pieces, one was a Hongshan bird. After a thorough examination, the only tool mark found on the Hongshan bird was line cutting marks inside the drill holes at the top of where the two holes met. The lack of tool marks on the surface probably was due to the polishing at the time of the carving and the subsequent weathering effects on the jade surface, as the authors explained. If we look at the Hongshan jade, the technique employed by the Hongshan jade carvers was principally grinding and polishing. To make the feature to be delineated to stand out, the material around the feature was ground down to make shallow and wide grooves, as seen on the facial feature of an eye and nose (Figure 3 and Figure 6), and around hand and arm (Figure 4). Thin carve in lines was seldom used except on pig dragons, especially on the larger ones. Such a technique of grinding and polishing was done with   

Shallow and wide grooves
Figure 3. Shallow and wide grooves
Hongshan line carving
Figure 4. Shallow and wide grooves and lines.

abrasive, which results in a smooth surface with no tool marks. A good example is the bird figure in figure 6. Another carving technique used was line cutting, also with the help of abrasive, as demonstrated on the mouth (Fig. 5). The cutting on the mouth is straight, but the flexibility of the line results in the floor of the mouth not leveled.

Mouth from line cutting.
Fig. 5. Mouth from line cutting.

Drill holes are significant features of the Hongshan jades. Most of the smaller pieces, 8 cm or smaller, have drill holes. Larger pieces bigger than 14 cm, as a rule, do not have drill holes. Such finding means that smaller pieces were used as hanging pieces to adorn the body, whereas larger pieces were statues. There are two types of drill holes. One type is direct through and through round holes from one side to the other, as seen on the bird behind the eyes (Figure 6). The other type is a two communicating holes

Hongshan jade bird
Figure 6. Bird with a round hanging hole behind eyes

diagonally drilled from the same surface (Figure 7). These types of drill holes are often

he same surface diagonally drilled holes
Figure 7. The same surface diagonally drilled holes.

referred to as the ox nose holes and are exclusively associated with the Hongshan jades. The resemblance to an ox nose can be easily seen with the extension of the part outside of the opening of the hole. Drilling such holes requires the drill placed at an angle on the jade surface. The position of the drill is the cause of the hole widening into an ox nose shape. In many of these diagonally drilled holes, like those in figure 7, such assertion is accurate. But in some ox nose holes, like the one on the C-dragons and hook cloud plaques, may have a different reason. These holes are not diagonally drilled and the holes are not on the same surface. These are through and through holes from one side to the other side, and yet they all have the extension ox nose part (Figures 8a, b, figure 9a, b, and figure10). Drilling a through and through hole, the drill is placed at ninety degrees

Figure 8a. C-dragon with ox nose holes, and pig dragon round holes with no ox nose.
Figure 8a. C-dragon with ox nose holes, and pig dragon round holes with no ox nose.
C-dragon and pig dragon
Figure 8b. The other side of the C-dragon with the ox nose hole and pig dragon with a round hole.

 

to the jade surface. The placement of the drill in this position will not cause the formation of the ox nose part (see the round through and through hole in figure 6). The ox nose part of the holes on the C-dragon and the hook cloud plaque must be an add on to the through and through holes, placed intentionally. Notice the ox nose parts are also pointing at different directions. On figure 8a, b, C-dragon, the directions are upward and downward. On the C-dragon in figure 9a, b, the directions are forward and backward. On

C-dragon with ox nose hole.
Figure 9a. C-dragon with ox nose hole.
The other side of the C dragon.
Figure 9b. The other side of the C dragon in 9a.

figure 10, hook cloud plaque, the ox nose parts are pointing upward to either side. Notice

Hook cloud plaque
Figure 10. Ox nose on hook cloud plaque slanted upward to one side.

the pig dragon on the back of the C-dragon in figure 8a, b, the round hole on it does not have the ox nose part. The ox nose parts are only on the C-dragon. A C-dragon and a hook cloud plaque without the ox nose on the round through and through holes should be highly suspicious for modern day forgery.

The Hongshan culture eventually disappeared from Chinese history, and with it the same surface diagonally drilled holes. All subsequent hanging holes on Chinese jades were the round through and through type. It was not until the middle of the 20th century when mass-produced fake Hongshan jades came into the market that these same surface diagonally drilled holes returned to China. The same surface diagonally drilled holes do not necessarily have the ox nose part (Figure 11). This type of drilled holes was

Hongshan jade
Figure 11. The same surface diagonally drilled holes on Hongshan jades.

used extensively on the netsukes in Japan (figure 12a and b), before they came back to

Japanese netsuke
Figure 12a. Japanese netsuke.
Japanese netsuke
Figure 12b. Japanese netsuke and the diagonally drilled holes

China. No one knows when and by whom the netsukes were created. The earliest netsukes are of the late eighteenth century. The fact that there is no drill hole in the world drilled on the same surface other than on Hongshan jades, raises the question of the relationship between the netsuke and the Hongshan jades. The Japanese netsukes have a high resemblance to the small size Hongshan jades. Adding to that the circumstance around the Hongshan site discovery was also interesting. The Hongshan archeologic site was first discovered in 1908 by the Japanese archeologist Ryuzio Torii. He was at that time a teacher in Mongolia for the royal family. For no known reason, Ryuzio Torii went hundreds of miles straight to the Hongshan site, without searching as if he knew where the site was and became the first person who discovered the Hongshan site. No doubt netsukes have the origin and root in Japan. But evidence points to a likely scenario that some Hongshan jades came into Japan during the late eighteen century and greatly influenced the netsukes development.

Not all Hongshan jades are lack of tool mark. The most apparent drill mark left behind a Hongshan jade is on this drill hole (Figure 13). The hole is not thoroughly

Drill hole with shallow and irregular marks on the side.
Figure 13. Drill hole with shallow and irregular marks on the side.

through and is on a 17.5 cm X 15.75 cm hook cloud plaque behind the face of a beast (figure 14). On the side of the drill hole are circular, irregular, and shallow marks, a sign

Drill hole on the hook cloud plaque.
Figure 14. Drill hole on the hook cloud plaque.

that it was drilled with a hand drill with abrasive, as in contrast to marks made with modern drills that are deep and regular, similar to marks left behind from a screw. Also, notice that the edge of the bottom of the drill hole is deeper than the center. This indicates that the drilling was done with a center hollow drill, and hence the pressure was applied only on the edge at the part of the drill where it was solid. Abrasive was used and because only the solid part of the drill was effective, drilling was only at the edge of the hole, at the solid part of the drill. As the drill went down the side of the drill hole, the hollow drill left a core in the center. The core was then removed by chipping, and the bottom smoothed. Speculation has been that the hollow drill was a piece of bamboo. But the softness of the bamboo makes it unlikely to be the drill for the much harder nephrite surface. The diameter of many of these drill holes are small, often 3 – 4 mm. To drill such a small size hole, a piece of bamboo of similar diameter must be used. Bamboo of this size will not be able to withstand the constant twisting during the drilling. The more likely candidate for such a drill is a piece of an animal long bone, like an arm or leg bone. Bone has a hardness of 5 on the Mohs scale, like that of iron, making it a much suitable tool than bamboo. The readily available bone is also known used as a tool since the Paleolithic time in China.

It has long known that Long drill holes in Neolithic China tend to taper to the center and are drilled from both sides. The reason for such a tapering effect is because only one piece of bone was used as a drill for half of the hole. During the drilling, friction and rubbing of the drill against the side wall decreased the diameter of the bone drill as it went down. As a result, the hole tapered towards the center. Because all animal long bones are hollow in the center, the drilling creates a central core in the center of the drill hole. The small diameter of the drill hole requires a small animal bone with small long bone diameter. Since the diameter of the bone was relative to the length and as the drill hole tends to have a small diameter, the piece of bone used also tends to be short. For the longer drill hole, it was necessary to drill from the other side. The same tapering effect to the center will result. When the two sides met in the middle, the core was released and dropped out. Due to the slight imperfection of alignment, it always left behind a small notch in the middle of the drill hole. As animal long bones came in pair, a similar diameter size and length bone drill could be easily obtained for drilling from the other side. Drilling in such a way was the most efficient with the least effort.

Identifying modern tool marks on the jade surface is one way to identify forgeries. Recognizing toll marks of the period, together with recognizing changes on the jade surface resulting from chemical weathering, are essential to separate the genuine from the fake buried nephrite.

Chemical weathering effects

For centuries people know that Chines buried nephrites underwent a color change from its original natural state to a greyish, brownish, reddish, and may even be blackish discoloration. Such changes are taken for granted, and no one knows why, and no one has asked any question of what causes such a change. However, simulating such a change of color on the nephrite surface is the principle way to make forgeries. Therefore, recognizing the actual natural color change and knowing the reason for such change on the jade surface is crucial to identify the fakes from the genuine. The buried nephrite color change comes from the secondary products produced from the chemical weathering process when the nephrites were buried. All minerals and rocks undergo the weathering process in a natural environment. There are two types of weathering, physical weathering from wind and water erosion, expansion and contraction from frost and snow, and invasion from animal and plant when rocks and minerals are above ground. Chemical Weathering is a chemical process of the interaction of minerals and water when they encounter underground. Chinese nephrites were buried in graves and tombs, some like Hongshan jades for over five thousand years. Secondary products from the weathering process form inside the micropores and microcracks of the nephrite. Because there is a limit to how deep water can penetrate the nephrite surface, as more secondary products are formed with time, the limitation of how deep it can go into the nephrite forces the secondary products overflow from the micropores and microcracks onto the jade surface. As the secondary chemical products spill onto the surface, they form crystals with specific color different from the nephrite. Because all the secondary products have their own color, the crystallization of such products on the jade surface, together with the secondary products form inside the micropore and microcracks of the nephrite, is the reason for the color change on the buried nephrite. The changes in the nephrite only occur on the topical 0.1 – 0.2 mm. The limitation of the changes to only such a thin layer is the reason why using spectroscopy and x-ray diffraction in the laboratory to test the buried nephrite only gives the answer that it is nephrite and does not verify the chemical weathering effect on the surface. The chemical weathering effect can be easily observed under a 40X magnification stereo microscope. It must be emphasized that none of these changes has been confirmed scientifically. All are based on the correlation between observation and reference from Chemical Weathering literature. (See the Nephrite Fundamental and Chemical Weathering Blogs on this site). Hopefully scientific confirmations will eventually come. But the observation of the changes is accurate enough to identify genuine buried nephrites from forgeries as we look into the Hongshan jades from this perspective.

Nephrite can be considered as a mineral even though it composes of Actinolite and Tremolite. Chemically It is a calcium, magnesium, and iron-rich silicate belonging to the amphibole group and has a needle-like fibrous crystal structure (Figure 15). Iron is what gives color to Nephrite. Tremolite is rich in magnesium and therefore

tremolite
Figure15. Nephrite with fibrous crystal.

white, and Actinolite is rich in iron and therefore has the color of green, yellow, brown, and even black. The proportion of Tremolite and Actinolite in Nephrite determines the color of the nephrite. Today any Nephrite containing more than eighty percent of Tremolite is considered Hetian mutton fat jade regardless of its origin. Within the nephrite, there are micropores and micro-cracks seen only under an electron microscope (Figure 16). Such micropores and micro-cracks play a crucial role in

 

tremolite sem (2)
Figure 16 nephrite surface under an electron microscope.

Chemical Weathering and color change on the jade surface, as we shall see.

Igneous, metamorphic, and sedimentary rocks form the crust of the earth. Igneous and metamorphic rocks form in the earth mantle under high temperature and pressure. As they move into the low temperature and low-pressure crust, they become unstable. Physical weathering first breaks up rocks into smaller boulders and pebbles. Chemical weathering eventually reduces them into more stable minerals, releasing cations, forming clay. Clay minerals, together with sand, hummus, and water, become soil. Without weathering there will be no soil and without soil, there will be no plant and no animal life. Life as we know it will not be possible, emphasizing the importance of weathering in nature. Water is the most crucial element of weathering. As a result, weathering is a slower process in cold and arid areas and less pronounced than in wet and hot regions. Within the same area, weathering effects can be different on the same rocks and minerals due to differences in water flow, and the surrounding environment of the rocks. Even on the same pebble, varying degrees of weathering can be observed in different parts due to the influence of water flow. All of these are important to remember when observing the chemical weathering effect on the buried nephrite. The differences in location of the buried site, over hundreds or thousands of years in the change of water flow, periods of wet and dry weather change, and shifting of soil can all influence the weathering effect observed on the buried nephrites, and are important to consider when looking at the weathering effect.

Dissolution and leeching are the initial steps of Chemical Weathering. In nephrite, calcium, magnesium, and potassium leach out, flowed with water, and eventually lost to the sea, contributing to the salinity of the seawater. Silicate also leeches out, but in proportion to a lesser extent. The loss of cations leads to crystal structure change and amorphous silicate forms. Often the whitish-grey amorphous silicate appears on the nephrite surface is mistaken as calcium (Figure 17). On many fake buried

Eastern Zhou jade plaque
Figure 17. Eastern Zhou pendant with amorphous silicate.

nephrites white powder is randomly placed on the surface to simulate the amorphous silicate. Notice in figure 17, the distribution of the amorphous silicate has a pattern. During the jade carving, a large amount of fine nephrite granules was produced and left around the cut lines, in groves, depressions, and drill holes, places where polishing was unlikely to reach. Such areas also tended to retain water. The dissolution of these fine granules into amorphous silicate resulted in an appearance as if the amorphous silicate was outlining the lines and groves, as shown in figure 17. It is also the reason why large amounts of such whitish-grey amorphous silicate are often found inside drill holes obscuring tool marks.

Leeching and dissolution enlarge micropores and microcracks. Hydrolysis and oxidation also take place, and secondary products form. Nephrite, as a member of the amphibole group, forms clay minerals Smectite and Kaolinite, and iron oxides Hematite and Goethite. The clay minerals have a white to greyish, yellowish color. The iron oxides Hematite has a deep red to brownish red color but also can be dark grey. The other iron oxide Goethite can be yellow, red, deep brown, and can also be black. The formation of the secondary products on the jade surface is the basis of color change on buried nephrites. As hydrolysis and oxidation require water, water determines all changes seen on the nephrite, and since the penetration of water into the nephrite surface is limited, only 100 to 150 angstroms from scientific studies, changes are only limited to an extremely thin topical layer. Secondary products first form in the micropores and microcracks as a ferruginous gel-like substance. Depending on the secondary products formed, the buried nephrite color starts to change into the secondary product color in the micropores and microcracks. At first the nephrite loses its luster, and as more products form, the color begins to change as in the Song frog in figure 18. Due to the lack of water penetration, as more secondary products formed,

Song frog
Figure18. Song frog

micropores and microcracks behave as they are plugged. Continue formation of the secondary products results in the spilling of the ferruginous gel onto the surface of the nephrite forming a crust, and eventually crystallize. Similar changes also are seen on the nephrite pebbles found in streams. Many of the secondary products developed on the surface may have washed away by the water stream. But iron oxides Hematite and Goethite can crystalize, and a reddish, yellowish skin can form on the surface together with greyish clay phyllosilicate (Figure 19).

nephrite pabble
Figure19. Nephrite pebble with iron oxide and greyish phyllosilicate skin.

Throughout Chinese history, collectors consider there are two types of buried nephrites, those newly unearthed, and those in collectors’ hands for generations. Those newly unearthed retain all the chemical weathering effect. Those that have been in collector’s hand underwent surface cleansing. Chinese collectors habitually rub and may even scrap the jade surface to clean what they consider dirt in an attempt to return the jade to its pre buried color. Many hundreds of years of such rubbing and cleaning results in the removal of the crust made of secondary products, exposing the jade surface with the secondary products still in the micropores and microcracks. Figure 20 is a Han (221 -206 BC) beast that has been in collectors’ hands for hundreds of years. Frequent

Han beast
Figure 20. Han beast.

rubbing, scraping, and cleaning results in the removal of the secondary products, exposing the jade surface. Figure 21 shows the Han beast surface under a 40X stereotactic microscope. During the dissolution and leaching phase, due to the loss of substance, the surface micropores enlarge, and eventually, they coalesce forming an elongated shallow pit as if the jade has lost a small piece of skin as shown in figure 21. A brownish protonation layer where the chemical reaction took place, form at the bottom

Han beast magnified
Figure 21. Han beast under 40X Magnification

of the pit. The protonation layer is only a few atoms thick and cannot be removed with ultrasound cleaning. The red arrows point to two thin silvery lines with a metallic shine. Such silvery lines are frequently seen on the buried nephrite surface. Most of them are in single file straight lines, with some seen at the edge of the crust edge. Because the angle of reflection of such lines is not ninety degrees, to see these lines, one must hold the jade piece to put it into the microscope focus, tilting the surface to look at the surface at different angles. The nature of these metallic lines is not clear. But in some, they seem to be formed by tiny metallic granules. Looking under the microscope obliquely by tilting the jade is also the best way to appreciate the thickness of the crust and the crystal formation of the secondary products on the jade surface. Notice there are phyllosilicate crystals of the clay mineral remain on the right side of figure 21, despite hundreds of years of rubbing and cleaning by many generations of owners.

Most of the metallic lines are silver. Less often seen are the golden yellow metallic lines. Figure 22 is a Hongshan zoomorphic. Under the microscope (Figure 23a),

Hongshan zoomorphic
Figure 22. Hongshan zoomorphic
Hongshan zoomorphic 40X magnification.
Figure 23a. Hongshan zoomorphic 40X magnification.

the edge of a semitransparent, smooth ferruginous crust can be seen at the center with golden-yellow granules forming a line (in red circle). Below the red circle are phyllosilicate crystals of clay mineral formation. The greyish-white material has a look of irregular thicken plaque made up of sheet-like crystal of the phyllosilicate. All of these are on top of a darkish red iron oxide that encases the whole beast zoomorphic, giving the beast a reddish look (Figure 23b). In figure 23b under a 24X stereo microscope, at an oblique view, the secondary product of iron oxide, likely Hematite, can be view covering

Figure 23b. Hematite covering the zoomorphic, giving the zoomorphic beast a reddish color
Figure 23b. Hematite covering the zoomorphic, giving the zoomorphic beast a reddish color

the surface of the zoomorphic beast. The iron oxide covering is what gives the apparent color change of the nephrite. In another view of the zoomorphic beast in figure 22, greyish white phyllosilicate clay crystals are on top of the iron oxide crystals (Figure 23c). Notice also the straight silvery metal line indicated by the red arrow. The appearance of

Clay and iron oxide crystals formed on figure 22 beast zoomorphic.
Figure 23c. Clay and iron oxide crystals formed on figure 22 beast zoomorphic.

the buried nephrite is the result of the secondary products from Chemical Weathering accumulating on the jade surface. The iron oxide encasing with phyllosilicate crystal formation on top is also illustrated by the Neolithic disc on the front cover of Jessica Rawson’s book. “Chinese Jade, From the Neolithic to the Qing.”

Silvery metallic granules are often in a line. Those on the Hongshan zoomorphic on top of a worm (Figure 24) are in a group. Figure 25 is the magnified view of the jade surface with a group of metallic granules marked in a red circle. Around these

Hongshan zoomorphic
Figure 24. Hongshan zoomorphic on top of a worm
Magnified view with metallic granules.
Figure 25 Magnified view of figure 24 with metallic granules.

granules are the sheet-like phyllosilicate crystals of the clay minerals. Viewing buried nephrite with naked eyes can be deceptive. The surface on the C-dragon – pig dragon in figure 26 appears damaged on observation. Such an effect is often simulated by fake jade makers with sandblasting, and color manipulation by driving in dye and paint with heat

C-dragon and pig dragon
Figure 26. C dragon – pig dragon

and Ph, to obtain such appearance. Under the microscope, it becomes evident that such appearance is not damaged but is due to the accumulation of secondary weathering products on the surface, entirely different from that on the fake jades. In other words, weathering changes on the buried nephrites cannot be simulated, and recognizing such changes is a good tool for authentication.

As a group, Hongshan jades are buried the longest, for 5,000 to 6,000 years. The long burial time results in a large amount of secondary product accumulation on the surface, and hence with the most pronounce chemical weathering effects. Two clay minerals are formed, Smectite and Kaolinite. Clay minerals are phyllosilicates that form sheet-like crystals, and the accumulation of the crystals is what gives the irregular appearance of the surface. Figure 27 is the magnification of the C-dragon – pig dragon surface. Notice the thicking of the greyish-white crystals is what gives the appearance of

C-dragon and pig dragon under magnification
Figure 27. C dragon – pig dragon with secondary product crystal under magnification.

an irregular surface. Crystals have structure as noted on the right side of the magnified field, as opposed to the fake jades with white powder forming a thick paste. As the phyllosilicates come from a ferruginous gel, the presence of iron oxides gives the color a brownish tint. Variation of crystal form exits in different parts of the same jade piece due to many sub members of the clay minerals form various shapes of crystal. Smectite has 22 members, and Kaolinite has several. Figure 28 is the magnification of a different part of the C-dragon – pig dragon. Notice the difference of the crystal formation, more elongated and string-like than in figure 27. Chemical weathering is a very complicated

ariation of phyllosilicate crystal on C dragon - pig dragon
Figure 28. Variation of phyllosilicate crystal on C dragon – pig dragon

process, and much of it is still unknown. Various chemical reactions and numerous mineral formations result in different locations of the same piece of jade with different effects seen under a microscope. Simulation on fake jades is uniform throughout. Understanding this will significantly help in forgery identification.

Very few minerals give out an odor, and clay mineral is one of them, giving out the smell associated with soil. Chinese antique jades’ collectors have long known that buried nephritis has a scent that they referred to as tomb smell. This scent comes from the clay minerals formed from the chemical weathering process. Accumulation of clay mineral from the chemical weathering process on the jade surface increases with time, and only when enough clay minerals form on the jade surface that the buried nephrites can give out such odor. As a result, such odor comes only from jades Han or older, and the older the jade, the stronger the smell.

Crystals on the jade surface formed from the chemical weathering can have different shapes and forms. Figure 28a, also a magnification of the C-dragon – pig dragon, shows a patch of tile shape crystal within the two red circles. Such often found in

Tile like crystals among secondary minerals
Figure 28a. Tile like crystals among secondary minerals

isolated patches crystals likely is pseudomorph formation. Pseudomorphs are minerals with chemical substances of one kind and a mineral crystal form of another kind as it alternates from one mineral to another. Pseudomorphs, often referred to as Raised Relief on Chinese nephrites, form in the geochemical world, when conditions become suitable. An example of natural pseudomorph is in figure 29, a Limonite pseudomorph after Siderite. Nephrites, when buried, return to the geochemical world, and pseudomorphs

Limonite pseudomorph after Siderite
Figure 29. Limonite pseudomorph after Siderite

form. As pseudomorphs take time to develop, they only occur on nephrites Han or older. When they occur, they are multiple. Figure 30 shows a late Zhou to Qin (201-206 AD). Jade man with numerous nodules on the body. Under microscopic magnification, these

Late Zhou to Qin jade man
Figure 30. Late Zhou to Qin jade man

nodules are formed by tile like crystals (Figure 31). Raised relief or pseudomorphs are

Zhou jade man 6
Figure 31. Magnified jade man pseudomorph.

more often found in Hongshan jades for the apparent reason of the Hongshan jades’ longest burial time. Figure 32 is a Hongshan zoomorphic beast with multiple raised relief

Hongshan zoomorphic with raised relief.1
Figure32. Hongshan zoomorphic with raised relief.

on its body. Under the microscope reveals the similarity of the tile like crystal structure of these nodules to those in figure 31 (Figure 33). One difference between the two is that

Magnified zoomorphic surface.
Figure33. Magnified squatting zoomorphic surface.

there are metallic granules found on the nodules on the zoomorphic beast (Figure 33a), whereas metallic granules are not found on the jade man. Such a difference may indicate

Metallic granules on the zoomorphic in a red circle with raised relief on the right.
Figure33a. Metallic granules on the zoomorphic in a red circle with raised relief on the right.

that the chemical composition of the nodules is different between the zoomorphic beast and the jade man and that iron oxide are present in the secondary products in the zoomorphic beast giving the zoomorphic beast a reddish color. Pseudomorphs alter from the original mineral to a new mineral depending on the environmental influence. Raised relief on one jade surface may be a different mineral from raised relief on another jade surface. Figure 34 is a natural Agate pseudomorph. Notice the similarity of the crystal

agate pseudomorphRobert de Jager Germany
Figure 34. Natural Agate pseudomorph.

arrangement between the Agate pseudomorph and those on the jade man (figure 30 and 31), and on the Hongshan zoomorphic (Figure 32 and 33). Figure 35 is another Hongshan

Hongshan zoomorphic
Figure 35. Hongshan zoomorphic

zoomorphic beast. The pseudomorph on this zoomorphic beast (Figure 36) is completely

Pseudomorph on figure 35 zoomorphic.
Figure 36. Pseudomorph on figure 35 zoomorphic.

different from those on the jade man and the zoomorphic beast in figure 32 and more like the Limonite pseudomorph in figure 29. The different types of pseudomorph are further demonstrated in figure 37, another Hongshan zoomorphic. The pseudomorphs

Hongshan zoomorphic pseudomorph
Figure 37. Hongshan zoomorphic pseudomorph

on its body all have a Smoke Quartz appearance (Figure 38). All of these say that the

Squatting beast raised reliefe
Figure 38. Figure 37 Hongshan zoomorphic pseudomorph magnified.

raised relief on the buried nephrite may have different chemical compositions. There is one essential consideration when comparing pseudomorphs on the jade surface to the naturally occurring ones. The naturally occurring pseudomorphs are in general ten thousand years or older, whereas the pseudomorphs on the jade surface are at the most 6 thousand years old.

The chemical weathering process continues to take place within the surface micropores and microcracks of the jade surface, producing a ferruginous gel-like substance that eventually spills onto the jade surface, forming a thin semi-transparent crust. Such crust is hard to discern under the microscope unless the semitransparent crust is cracked, as on this Liangzhu (3400-2250 BC) disc with three birds (Figure 39).The

Liangzhu disc with cracks on the crust.
Figure 39. Liangzhu disc with cracks on the crust.

crack becomes apparent when the disc is examined under the microscope ( Figure 40). A

The backside of the Liangzhu disc.
Figure 40. The backside of the Liangzhu disc.

small piece of the crust is lost, exposing the undersurface   of the disc seen in the area within the red circle and on further magnification (Figure 41). The defect on the crust

204-a
Figure 41. Magnification from figure 40.

can now be seen, providing proof that such a crust exists. The ferruginous substance can thicken into a plaque on the jade surface. Figure 42 is another magnification view of figure 26, the C – dragon pig dragon. Amid greyish-yellow phyllosilicate crystals is a clear

C-dragon pig dragon surface ferruginous plaque.
Figure 42. C-dragon pig dragon surface ferruginous plaque.

plaque with an edge adjoining the clay phyllosilicate. At the center of the plaque, are silvery metal granules forming a straight line, identified within two red arrows. The presence of these metallic granules affirms the plaque is ferruginous. The color and the semi-transparency of the plaque are frequently mistaken as the jade surface looking at it with naked eyes and widely simulated by fake jade makers by covering part of the fake jade with dye and other parts without. Seeing such a pattern of an exposed jade surface can be a clue of forgeries.

The presence of the weathering crust on the jade surface is a good indication that the jade piece is genuine. This thin crust is only about 0.1 to 0.2 mm in thickness, comprising of clay phyllosilicate and iron oxide minerals. Many geochemical changes can be observed on this thin crust. Figure 43 is a Hongshan pig dragon beast. On it is a

Hongshan pig dragon beast.
Figure 43. Hongshan pig dragon beast.

group of brownish granules within the semitransparent crust (Figure 44). Such granules

Hongshan pig dragon beast Hematite inclusions
Figure 44. Hongshan pig dragon beast Hematite inclusions

black or deep brown in color and often referred to as charcoal, are Hematite inclusions formed inside the ferruginous gel. Hematite can also be reddish-brown. When it forms as a crust, it creates an optical illusion that the jade piece is reddish-brown in color, as we have already seen on the zoomorphic beast in figure 23. Figure 45 is a Han beast disc. A

13aHan
Figure 45. Han beast disc with Hematite encrusting.

magnified oblique view reveal the coloring is due to surface Hematite encrusting (Figure 46). Iron oxide encrusting is a frequent finding in Hongshan jades, as on this Hongshan

13lHan
Figure 46. Hematite encrusting on the jade surface.

zoomorphic insect beast (Figure 47). Again, to appreciate the presence of the crust, an

Hongshan zoomorphic insect.
Figure 47. Hongshan zoomorphic insect.

oblique view under the microscope is essential (Figure 48). The different colors on the

33f紅山文化
Figure 48. Different minerals create a crust with varying colors of different minerals

jade surface is due to the different mineral formed. The red and black are from iron oxides, and the greyish white is from the clay minerals. Figure 49 is another view of figure 47, the zoomorphic insect beast. The crust essentially becomes the jade surface

With Clay mineral and crack on the crust.
Figure 49. With Clay mineral and crack on the crust.

taking on the color of the secondary products as well as defects like the cracks that are in the crust rather than in the jade (Figure 49). Weathering product iron oxide in the crust can result in various colors of the Hongshan jade. The color change on the Hongshan eagle in figure 50, is likely from Goethite, as also likely the Hongshan bird zoomorphic in

Hongshan eagle with an iron-oxide crust.
Figure 50. Hongshan eagle with an iron-oxide crust.

figure 51 that has a distinct crystal formation (Figure 52a). Figure 52b is an oblique view

Hongshan bird zoomorphic.
Figure 51. Hongshan bird zoomorphic.
Hongshan bird zoomorphic surface crystals.
Figure 52a. Hongshan bird zoomorphic surface crystals.
Figure 52b. Oblique view of figure 52 bird zoomorphic Goethite crystal formation.
Figure 52b. Oblique view of figure 52 bird zoomorphic Goethite crystal formation.

of the jade surface. The iron oxide crystals are clearly on the surface of the jade piece. The beautiful color on the Neolithic disc on the cover of Jessica Rawson’s book, “Chinese Jade, from the Neolithic to the Qing” is not a natural color. The color is from the iron oxide formed on the jade surface similar to on the zoomorphic bird in figure 52.

There is a mineral formation unique to Hongshan jade. Figure 53 is a

Hongshan bird with a worm.
Figure 53. Hongshan bird with a worm.

Hongshan bird with a worm on its head. The unique mineral finding is inside the drill hole as in figure 54. The pin-like crystal is an iron oxide, most likely Goethite. Drill holes

Hongshan bird needle hematite crystal 1
Figure 54. Goethite crystal inside drill hole.

preserve water and have a cave-like environment suitable for   mineral development. This phenomenon is rarely seen as such mineral formation is uncommon. Although fragments of this type of mineral can be found inside other drill holes, a fully developed formation can only be found in one other Hongshan Jade, a zoomorphic with a beard (Figure 55). Inside its two obliquely drilled holes on its back are multiple of such mineral formations( Figure 56).

Hongshan zoomorphic with a beard.
Figure 55. Hongshan zoomorphic with a beard.
35b
Figure 56. Goethite crystals inside the oblique drill holes.

The key to distinguishing a genuine buried nephrite from forgeries is to recognize the color change on the jade surface comes from the secondary weathering products, clay minerals, and iron oxides. Only when the secondary product crystals are seen on the surface, authenticity can be ensured.

Through Jade to Hongshan cultural beliefs

 

Throughout Chinese history, jade has been regarded as a stone with mysterious power, a belief especially true during the Neolithic period, and hence jade was exclusively the medium for expressing religious beliefs. As with any art form, such expression reflects the thinking of the carver. Through jade, the carver presents his thought and outlook of his world and his perception of beauty to the viewers. With the Hongshan culture leaving no written record, jade provides a path for a glimpse of the thinking and the religious beliefs of the culture. Artistically, Hongshan jade, even with all the limits of being a Neolithic culture, attains a high artistic level, not less than any subsequent Chinese culture periods, thousands of years after.

The majority of the Hongshan jades are small, measured 3 to 8 centimeters. Most of the small piece has hanging holes like those discussed in the drill mark section above, indicating that such small pieces are for hanging on the body. None of the large pieces, which can measure up to eighteen centimeters, has hanging holes, except the hook cloud plaque (Figure 57), that can measure to 23 centimeters. With drilled holes on

Hook cloud plaque
Figure 57. Hongshan Hook Cloud Plaque.

top and to the sides, the Hook Cloud plaque most likely was for hanging on the human body. Some speculation that the plaque is an abstraction for a religious belief. Other large pieces longer than 15 centimeters like the zoomorphic beast in figure 35, and the zoomorphic insect beast in figure 47, as a rule, do not have drill holes as they probably are statues rather than a hanging piece.

Most of the Hongshan jades are beasts with human characteristics, a form of zoomorphic. These beasts zoomorphic intermingle with birds and insects often on top of the head of the beast. The pig dragons and C-dragons are a class of its own. Chinese scholars believe they are the forerunners of the Chinese dragon. Their faces, however, resemble that of a Hongshan beast (Figures 58 and figures 9a and b). The pig dragon is

Pig dragon with a pair of legs.
Figure 58. Pig dragon with a pair of legs.

more versatile and often combines with another subject, as with the C-dragon in figure 26. More often, the pig dragon combines with the zoomorphic beast (Figure 43), and in figure 58, in semi human form with a pair of human legs. A more complex pig dragon is in figure 59, one with a zoomorphic beast head, losing the characteristic pig dragon eyes connected with a pair of lines, and a pair of insect or bird wings. Both pig dragons in figure 58 and 59 give an impression that the pig dragon can evolve into other forms. In

Evolving pig dragon therianthrope.
Figure 59. Evolving pig dragon therianthrope.

another word, it is a therianthrope rather than a zoomorphic. It is quite often that the Hongshan animal and beast, as the pig dragon in figure 59, take more than one form. In figure 47, the zoomorphic beast is also part insect, and in figure 55, the zoomorphic beast is part bird and part insect. The combination forms may mean the Hongshan beast, man, insect, and bird can evolve into each other and are more likely therianthropes.

The Hongshan beasts and animals are not necessary a zoomorphic with more than one entity in one form but can occur as two different individuals. Figure 60 is a pig

Pig dragon on top of a beast.
Figure 60. Pig dragon on top of a beast.

dragon on top of a beast, and figure 61 is a beast on top of a pig dragon. Notice both the

Beast on top of the pig dragon.
Figure 61. Beast on top of the pig dragon.

pig dragon and the beast in figure 60 are facing the same direction, and the beast and the pig dragon in figure 61 are facing the opposite direction. Direction pointing is often a theme in the Hongshan culture, as we have seen on the ox nose part of the through and through drill holes on the C-dragon (Figures 8 and 9). Figure 62 is a beast. On its back is

Beast. The front of figure 63.
Figure 62. Beast. The front of figure 63.
106-2
Figure 63. Owl. The back of figure 62.

an owl facing opposite to the beast, resulting in both the beast and the owl showing the front (Figure 63). The beast zoomorphic in figure 64 also has an owl on its back. But in

105-1
Figure 64. Beast. Front of figure 65.
105-2
Figure 65. Owl. Back of figure 64.

this case, it is the owl’s back we are seeing as the beast and owl are facing the same direction (Figure 65). Figure 66a and b is a bird standing facing forward on top of a zoomorphic beast. This statue was a pair. Unfortunately, figure 66 is the only one in my

134-1
Figure 66a. A forward-looking bird on top of a beast.
30b
Figure 66b. Side view of 66a. Bird on a zoomorphic beast

collection. The other statue, the bird on top of the zoomorphic beast, faces backward. The theme of direction pointing, at a time in the same direction, and in others in a direct opposite is consistent in Hongshan jades. These Hongshan jade carvings illustrate clearly the concept of the same and opposite in the form of direction, as we shall see later also in the form of the two different sexes.

The goddess temple and the six pregnant female clay figurines excavated from the Hongshan archeologic site lead to the belief that Hongshan is a fertility worship culture. Hongshan is also the only Chinese culture period that displays the female figure in their jade art by carving breasts on the female characters, as on the female bird

Female bird zoomorphic.
Figure 67. Female bird zoomorphic.
Female beast zoomorphic.
Figure 68. Female beast zoomorphic.
Female beast zoomorphic.
Figure 69. Female beast zoomorphic.

zoomorphic (Figure 67), and the two female beasts zoomorphic (Figures 68 and 69). All female characters have round eyes and all female beasts zoomorphic sit in a semi kneeling position on their legs. This sitting position is like that of the later Shang and Zhou period, tracing back a long tradition. The male counterpart has almond-shaped eyes, and most of the male beast squats (Figure 70), with less often sits on the ground (Figure 71). Both the male and female may stand. Notice also are the two different types

Male beast zoomorphic.
Figure 70. Male beast zoomorphic.
25d
Figure 71. Male beast zoomorphic sitting on the ground

of horns on the female zoomorphic in figure 68 and the male zoomorphic in figure 70. It is possible that these are not horns of the beasts, but headgears or even hairstyle of the Hongshan period. The shape of the eyes differs between males and females with female eyes round, and the male eyes almond-shaped, provides clear identification of gender in human, beast, bird, or insect. Most birds have round eyes. The almond-shaped eyes on the bird in figure 72 distinct him as a male, a contrast to the round eye bird in figure 53,

Male bird.
Figure 72. Male bird.

the female bird zoomorphic in figure 67, and the female beast in figure 68. Males and females are often in pairs, and when they are in pair, each faces a different direction. Figure 73 is a pair of males and female zoomorphic beasts with each facing an opposite

雌雄雙獸
Figure 73. Male and female zoomorphic beast facing a different direction.
127-2
Figure 74. Male and female zoomorphic facing up and down.
Male and female zoomorphic
Figure 75. Male and female bird zoomorphic.

direction. The two zoomorphic beasts of opposite sexes in figure 74 facing up and down. Figure 75 is a pair of bird beast zoomorphic, back to back in two directions with the smaller round eye female on the back of the bigger almond eye male. The opposite position emphasizes the contrast of male and female consistent with the opposite directions indicated by the ox nose on the C-dragons, and the opposite directions facing by the zoomorphic, birds and beasts. What it shows is the idea of opposing directions of front and back, forward and backward, up and down, female and male, are in one, a philosophy that may well be the embryonic beginning of Yin and Yang.

Pregnancy is a theme in the Hongshan religious belief. From the excavation of the Hongshan archeology site, there are six pregnant female figurines. Such theme of pregnancy also reflects in the jade carving. Figure 76 is a pregnant beast zoomorphic.

Pregnant therianthrope.
Figure 76. Pregnant therianthrope.

Unfortunately, none of the figurines retains the head. Having human-like breasts in these figurines may not mean they are human, as seen in figure 67, the female bird zoomorphic also have human-like breasts and a bird head. The zoomorphic in figure 76 has a protruding abdomen indicating pregnancy. The head of the beast has a C-dragon crown and a pair of two lines connected eyes. A connection of eyes in such a manner is only in the pig dragon. The combination brings in the importance of the C-dragon and the pig dragon in relation to life. Such a combination also confirms that the beast is a therianthrope as it shows more of a change from the human, beast, to C-dragon and pig dragon as opposite to a zoomorphic, a human in beast form.

A unique bottomless tube (Figure 1) thought to be religion related is also a subject of the jade carvings. Figure 77a and b is a turtle climbing up such a bottomless tube, and figure

5a
Figure 77a. Turtle on the bottomless tube front.
5b
Figure 77b. Turtle on the bottomless tube side.

78 shows a bottomless tube on the feet of a bird zoomorphic. The association of the bottomless tube, the turtle, and the bird zoomorphic may indicate the Hongshan

tube and bird
Figure 78. Bottomless tube on feet of bird zoomorphic.

religious belief is related to nature, an interrelationship between humans and birds, insects, and beast. Both the bottomless tube and the jades are found only in graves, making such a relationship likely an afterlife belief.

Often found in Hongshan carved nephrites are insects, birds, and beasts on top of a larger beast zoomorphic. Figure 79 a and b is a beast zoomorphic with two

3c
Figure79a. Two wing insects on top of a beast zoomorphic
3b
Figure 79b. Front of figure 79a.

winged insects on its head. The eyes of the insects become the beast zoomorphic eyes. Figure 80 a and b is a small beast on top of a larger beast zoomorphic. Figure 81 a and b

11e (2)
Figure 50a. Small beast on top of a beast zoomorphic.
11f (2)
Figure 80b. Side of figure 80a.
26a
Figure81a. Bird on top of a beast zoomorphic.
26d
Figure 81b. Side of 81a.

is a bird on a beast zoomorphic, and figure 82 a and b is a double-headed beast on a larger beast zoomorphic. These carvings further demonstrate the close interrelationship

24b
Figure 82a. Double-headed beast on a beast zoomorphic.
24c (2)
Figure 82b. Side of 82a.

between human, beast, bird, and insect in the Hongshan belief. All the zoomorphic with an insect, bird, or a small beast on their head have almond shaped eyes indicating they are male beasts. The eyes of the beast zoomorphic in figure 79 are the eyes of the insects. But the squatting position tells that the beast is a male. There are also carvings with a human face. Figure 83 a and b is a man’s face and figure 84 a and b is a man’s face with two legs attached to it. Both have a winged insect on top of their heads. The similarity in

6c
Figure 83a. Man’s face with wing insect on the head.
6d (3)
Figure 83b. Front of 83a.
29a
Figure 84a. Man’s head with legs and insect on top.
29c
Figure 84b. Back of 84a.

position, as well as the similarity of the insects on their heads, may indicate the male beast zoomorphic and man are interchangeable and identical. The meaning of the insect, bird, and beast on the heads of man and beast cannot be known. But that it only associates with males indicates male is a special class. Only other human face on the carvings is this female beast zoomorphic with a human face mask behind her head (figure 85 a, and b). No insect, bird, or beast appears on the head of the female zoomorphic, a distinct difference from the male counterpart.

20a
Figure 85a. Female zoomorphic beast with a mask.
20c
Figure 85b. Back of 85a.

Hongshan was a Neolithic culture 6,000 years ago. To many people today, the culture was primitive. Such an assumption is reflected in people who carve forgeries, creating jade pieces they believe primitive and call them Hongshan jade. Without the opportunity to see an authentic Hongshan jade artifact, the fake jade carvers produce inferior objects out of their imagination of what they believe a Neolithic primitive culture artifact. Such imagery permeates Chinese society today. Yet the Neolithic people of Hongshan carved out jade pieces that are both technically and artistically advance even in today’s standard. The technique they used was principally grinding with abrasive, leaving behind a smooth jade surface with minimal tool marks. The most frequently found tool marks are inside drill holes. Drill holes are made with bone drills and abrasives, leaving behind shallow, irregular and circular marks on the side of the drill hole (see figure 13). Most of the Hongshan jades are round three dimensional. Without the benefit of today’s instruments, the Hongshan carvers were able to carve zoomorphic beasts squatting on their two feet, essentially putting the center of gravity of the mass onto two small points ( figures 32, 37,80 and 84), something that today’s fake jade carvers cannot achieve. Most of the jades are superb artistically. Consider the beautiful geometric curve of the C-dragon (figure 9), the line management of the female beast (figure 22), the imaginative birdman (figure 51), and the balance in the abstraction of the hook cloud plaque (figure57). One can go on and on. If one cannot see artistic beauty in a Hongshan jade piece, one can very much doubt the authenticity of it.

Using abrasive has always been the foundation of jade carving in China. From the Neolithic time to the Zhou Dynasty, the technique was grinding with the use of abrasive, a tedious and time-consuming process, but left behind a smooth jade surface with little to no tool mark. During the Han Dynasty, latches came into use also working with abrasive. Jade carving became more efficient, required far less time to accomplish, but also left behind distinctive tool marks. Such a technique very much continues to the Qing Dynasty (1644 – 1912) resulting in tool mark similarity between the jade made before Han and after Han.

Jade of each period and dynasty has different style and characteristic. Hongshan jades are of no exception. Hongshan carvers often combine two characters into one piece, a form that has not seen in any period of Chinese jade. Such a combination often presented creatively. Figures 86 a, b, and c show a beast combining with a cicada. The front is the beast, the back the cicada and with the bottom the cicada

4b (2)
Figure 86a. Beast cicada combination front.
4a (3)
Figure 86b. Beast cicada combination back.
4c (2)
Figure86c. Beast cicada combination bottom.

face. Hongshan carvers also have a sense of humor. Figure 87 a, b, and c is a piece that looking at it from one side is a face (figure 87a). Turn the piece around, and there is another face (figure 87 b). The back side is a frog on a leaf (figure 87 c). The Hongshan

141-2
Figure 87a. Three faces combination, face one.
141-1
Figure 87b. Three faces combination. Face two.
141-3 (2)
Figure 87c. Three faces combination. Frog on back.

jade is genuinely an art form in no sense inferior to any other period. Notice the crack line on figure 87a. The crack line is curved an indication the crack is on the secondary weathering chemical. If it is on the jade itself, it will be straight due to the structure of the nephrite crystals. Also, notice the similarity between the human face in figure 87a and the cicada face in figure 86c, consistent with the Hongshan theme of interchangeability and intermigration between humans and animals.

 

From Hongshan to Han

                    One of the mysteries in Chinese antiquity is the meaning of a beast face that appeared on the Shang (1600 BCE – 1046 BCE) and Zhou (1046 BCE – 256 BCE) bronze ceremonial wares (Figure 88). The beast face also appears on a Shang jade vase (Figure 89 a and b). The origin or the meaning of such a beast face has led to many speculations

2019-06-30 16.09.18 (2)
Figure 88. A diagrammatic beast face on Shang bronze.
Shang jade vase.
Figure 89a. Shang jade vase.
305-1 (3)
Figure 89b. Beast face on Shang jade vase.

with no answer for certain. Tracing back, the only resemblance of the Shang beast face is the face of the Hongshan zoomorphic beast. The question is that can the Shang beast face has an origin in the Hongshan beast zoomorphic. Figure 90 is the face of the Hongshan zoomorphic beast with a bird on his head (Figure 66a and b) and look again at figure 86a

30a (2)
Figure 90. The face of a zoomorphic beast,

the beast face in front of the cicada. Figure 91 is the Hongshan zoomorphic beast in front of the hook cloud plaque in figure 14. The hook cloud plaque is an abstraction that has a

148-1
Figure 91. Zoomorphic beast face in front of a hook cloud plaque.

ligious meaning. The presence of it behind the zoomorphic beast gives the zoomorphic beast a religious significance. When comparing the three Hongshan beast faces, figures 86a, 90 and 91, to the Shang bronze and jade vase beast faces in figures 88 and 89, the similarity between all these faces is there, making it very likely that the Shang beast face has an origin in the Hongshan zoomorphic beast.

                    But if that is the case, why did the people of Shang carve the Hongshan zoomorphic beast face onto their ceremonial bronze wares. The answer lies in two Liangzhu culture (3400 BCE – 2250 BCE) jade butterfly plaques (figure 92 and figure 93).

良渚神獸
Figure 92. Liangzhu butterfly plaque with two god beasts.
Liangzhu plaque)
Figure 93. Liangzhu butterfly plaque with the Hongshan beast face replacing the lower god beast.

Liangzhu is another Neolithic jade culture in China, overlapping in time with Hongshan (4700 – 2900 BC), coexisting at the same time for five hundred years. Physically they were a thousand miles apart. The Liangzhu culture has three images carved on their jades, the godman 神人 (figure 94), and the two god beasts 神獸 seen in figure 92. The godman is the ancestor king, and the two misnomer god beasts are symbols of human representing the

img055 (2)
Figure 94. Liangzhu godman.

present living king and the ancestor king. The lower god beast with a nose in figure 92 is the symbol of the ancestor king and therefore is carved on the body of the godman, the ancestor king, in figure 94. The upper god beast without a nose in figure 92 is the symbol of the present living king, and therefore is carved on the cones, axes and beads, personal belongings of the current living king. (The explanations of the godman and god beasts are found in the blog post “良渚神人神獸的意義及其宗教中心思想,” in this web site). Except for the one on the lower part of the butterfly plaque in figure 93. the Liangzhu culture has never carved the beast face on their jades. This beast face is the first-ever beast face in Chinese history, predating the Shang (1600 BCE – 1046 BCE) by at least one thousand years. As the beast face is not part of the Liangzhu culture, there must be a base for this beast face carving, and the only possible source is the Hongshan zoomorphic beast. In figure 92, the Liangzhu god beast with a nose occupies the lower position of the butterfly plaque. In figure 93, that position is replaced by the beast face. Since the Liangzhu god beast with a nose is the symbol of the ancestor king, the replacement of it with the beast face indicates the beast face carries the same meaning, that It is also a symbol of the ancestor king. The Shang ceremony is to worship and honor the ancestor kings. It is, therefore, logical to have the beast face, a symbol of the ancestor king carved on the ceremonial bronzes.

                    Since the Neolithic time, in the subsequent periods in Chinese art, the beast face is not as frequently seen on the jades as on the bronze. It appears on a Zhou Dynasty disc as abstract designs (figure 95). It also appears on a seal (figures 96a and b). This seal

2019-06-29 16.13.23 (2)
Figure 95. Zhou disc with beast face abstractions
2019-06-29 16.06.29 (2)
Figure 96a. Seal of a Three Kingdoms Han general.
2019-06-29 16.07.49 (2)
Figure 96 b. The face of the seal in 96a.

has a beast knob, and on the four sides, four beast faces. Four characters are on the seal surface 黃漢起印. The name indicates that it is the seal of a general 黃蓋in Han of the Three Kingdoms period (220 -280 AD). After Han, the beast face is no longer seen in China. The disappearance has to do with the tremendous change in Chinese culture after Han. Both the bird and the beast face represent the ancestor king, with the beast face as the symbol, and the bird believed to be the medium of the ancestor king’s soul when he makes his journey to the sun (explanation in “渚神人神獸的義及其宗教中心思想”). Such religious belief is the reason why both the beast face and the bird are on the ceremonial bronze and the Shang jade vase (figure 89a). After the Han Dynasty, Buddhism came to China. Buddhism replaced the original religious belief of ancestor king worship and with it the ancestor king symbol of the beast face and the bird. Yet ancestor worship remains in Chinese society even today. The Hongshan and Liangzhu spirit are still deep in Chinese culture.

 

Hongshan religious beliefs

                   The Hongshan jades present a pattern through which it opens a path to the thinking and beliefs of the carvers. The finding of the goddess’s head and the pregnant female figurines at the temple site show Hongshan was a fertility worship culture. This belief is also reflected in jade in the pregnant therianthrope (figure 76). The bottomless clay tube thought to be of religious significance is also found in the jade carving (figures 77 and 78). Jades are buried in graves and should express the religious belief of the afterlife apart from the fertility worship associated with the temple. Often the jade carvings are zoomorphic beasts, semi-human, with birds and insects. Some combine more than one as if it is in transformation, a therianthrope rather than a zoomorphic (Figure 59). Such a transformation afterlife may indicate the Hongshan belief in reincarnation or transmigration after death. Reincarnation or transmigration is a universal human belief shared by people in India, ancient Greek and, Rome, natives in North America and Australia. That this is may also a belief in the Hongshan culture should not be a surprise. 

The Hongshan zoomorphic beast, birds and insects, all show a clear distinction between males and females, with males have almond-shaped eyes and females have round eyes. Male and female are often set in one piece facing the opposite direction (figures 73, 74, and 75). The concept of opposing directions and yet form as one is also shown by the ox nose part of the round drill holes on the C-dragons and the opposing direction facing by the zoomorphic beasts and birds on the same jade piece ( figures 63, 64 and 65). This thinking, together with the male and female opposing but complement each other into one piece, is very much in line with the Yin and Yang philosophy that comes later into the Chinese culture.

Hongshan jade also gives us a glimpse into a Neolithic society, a society with men and women playing different roles, the males into the position of kings, and females into the role of fertility. The beast zoomorphic in the Hongshan culture and the godman, god beasts in the Liangzhu culture, all represent ancestor kings’ worship that passed on to the Shang Dynasty and influences the Chinese culture even today.

 

 

 

 

 

紅山玉器 – 從辨偽到紅山文化思想

紅山獸人

前言

 

紅山文化是中國五千到六千年前新石器時代史前文化. 而最為人響往的是紅山玉器, 雖說七千年前在河姆渡已見玉器的出現, 但紅山應是中國最早的玉文化. 然而在中國玉器上, 紅山玉器可説最為混亂, 網上照片所見,差不多能説全是贗 品. 稱為參考的書籍, 連書面上的照片,也是 明顯的現代偽作, 真正能看到紅山玉器的人實不多. 紅山文化要在二十世紀初才被發現, 在古玉上 紅山玉器也是最遲才被認識.中國社會科學考古研究所在80年代至二十一世紀初, 對紅山遺圵作了多次大規模發掘. 從這些發掘, 中國得來了一百件紅山玉器, 這一百件也包含了殘件, 有學者估計, 百份之九十紅山玉器, 已在發掘前流出了遺址. 但以百份之十是一百 件來算, 紅山玉器總數只是一千件. 這與市面上可能是數十萬乃至百萬件自稱紅山玉器相比,紅山玉器實極為稀少. 在連做偽紅山玉的人也不知道真紅山玉器的模樣下, 大量紅山玉器便出自在做偽玉人的幻想. 現今可說真偽没法能分.最為可悲的是, 作為中國人也不能看到自巳的文化, 紅山玉器含有六千年前中華人民的極高藝術成就, 也是紅山人民思想的結晶.並不是現今唯利是圖, 做偽玉人的低下幻想所能相比.

在上世紀八十年代初, 我有緣遇到一些上古玉求售, 當時對中國古玉並没有半點知識, 但這些玉器雕刻精緻, 且價錢相宜. 便開始了我的古玉收藏, 雜在其中有一些與一般認識的古玉不同的玉件, 就是問售與我這些玉器的人, 也不知這些玉件從何而來. 慢慢地 求售的玉器發生明顯的改變, 很多一看便知是現代偽作, 購買便因此終止. 多年來所藏給與我極大機會, 能對中國上古玉欣賞與探討, 慢慢地對上古玉有了認識, 也明白了那些與一般所知的中國玉有所不同的是紅山與良渚玉器. 然而也深明白, 有贗品雜在所藏玉器中. 尤其是紅山玉器, 因為所能知的極有限, 使真偽無法分出. 這樣一直至2007年左右, 終於悟出上古玉都曾被埋在土裏數千年. 由於玉是礦物, 而所有礦物被埋在土裏, 都會經過大自然的化學風化過程,( 請閱本網站拙作Chemical Weathering). 便搜讀各國對軟玉所屬的礦物類角閃石(Amphibole), 的化學風化研究論文, 明白了化學風化的過程, 也明白了軟玉在化學風化下所能產生的副產品(secondary products), 由於這些副產品在玉面上的形成, 做成了古玉面上的改變, 這些變化在四十倍顯微鏡觀察下, 是没法偽做. 也因此能辨出古玉的真偽. 在把贗品在藏品中抽出後, 真的紅山玉器還有五十件. 從這五十件玉器, 可一窺五六千年前紅山人民的藝術與思想. 但玉器的真偽還是重要關鍵. 所以本篇將先會討論古玉辨偽. 化學風化參考列在Chemical Weathering 篇後. 紅山文化參考在下列.

1. Sites of Hongshan Culture: The Niuheliang Archaeological Site, the Hongshanhou Archaeological Site, and Weijiawopu Archaeological Site. UNESCO. https://whc.unesco.org/en/tentativelists/5804/
2. Jades of the Hongshan culture : the dragon and fertility cult worship. Elizabeth Childs-Johnson. https://www.persee.fr/doc/arasi_0004-3958_1991_num_46_1_1303
3. 紅山文化彩陶簡論. https://www.getit01.com/p201806273387636/
4. HONGSHAN CULTURE AND OTHER NEOLITHIC CULTURES IN NORTHEAST CHINA. http://factsanddetails.com/china/cat2/sub1/entry-5371.html

 

紅山文化慨論

 

紅山文化地域北起內蒙南部, 南至湖北北部, 東達遼寧西部. 是集合了過千,位於熱河東北西部, 同文化村落遺址的通稱. 遺址佔地廣闊, 分佈達20萬平方公里.紅山文化最早發現於1908年, 二十世紀初曰本與法國人多次發掘, 據說所得只有一些殘陶. 1956年經北京大學正式調查, 從1983年至2003年, 中國社會科學院科學院考古研究所, 在牛梁河, 白音長汗與興隆溝等遺圵,作數次大規模正式發掘.2006年紅山正式成為中國上古保護文化.

新石器時代的紅山文化已進入農耕, 石製工具出土甚多.主要是務農與狩獵的石器. 紅山文化已進入細石器時代, 出土的細石器中, 也有做玉的工具. 陶器是精美的細泥紅陶上塗以黑彩, 紋飾都是幾何圖案, 紅山彩陶與其他新石器文化彩陶有別, 自有他的獨有性, 彩陶器主要是一般的砵, 碗,盆, 罐, 壺等日常器皿. 但最 顯著的是彩陶筒形器(圖1), 此器只見於紅山文化, 這無底圓筒並不能

無底陶筒
圖1 彩陶無底筒形器

承載食物, 所以不可能是日用器皿,筒上塗的黑彩寬頻多層平行紋飾, 極為特別,也只見用於這些圓筒上, 由於這些高筒形器時見並排放在墓室周圍, 且是在大型墓葬中,學者以為這些圓筒與圓筒上紋飾,應含有宗教的意義. 紅山宗教的重要發現,還有牛河梁發掘出的女神廟與女神頭像. 及在喀左東山嘴祭祀遺址所發現的一批泥做小型裸體孕婦像(圖2), 顯示紅山社會可能有對生育女神與生殖力的崇拜. 而這些紅山宗教思想都反應在玉器上. 以下當加以詳述.

紅山孕婦
圖 2 裸體孕婦像

 

紅山玉器與辨偽

 

紅山文化最為人響往的應是玉器,C字龍, 勾雲形器, 馬蹄形器與豬龍等都是人所皆知. 出土的也有鳥, 龜與三孔器等. 參考列中的Elizabeth Childs Johnson篇中詳述了中國考古研究所發掘的出土玉器, 在紅山玉器參考中, 這篇中圖片也是最為可靠, 但可惜的是, 由於大部份紅山玉器已外流, 出土的只能看到紅玉器的片面, 而不能看到紅山文化在玉器上的真面目與藝術成就.

紅山玉器大部份是小件, 從三至八厘米. 但也有高至十八厘米. 勾雲形器可長至二十八厘米. 這大小其實與中國玉器尤其是古玉, 分别不大. 中國自商代已從新疆和田進口軟玉, 自古和田玉料都是從河床而來的籽玉, 所以做出的玉器, 大部份是小件, 紅山玉料不會是來自和田, 但由於紅山玉器的大小與商周時期玉器大小没大差别, 紅山玉料來源, 應也是沖積的籽玉與殘積的砊玉. 那就是說如果一件玉器比三十厘米還大, 差不多可以肯定是現代偽品. 中國要至清代, 才能進入山中開採玉料, 所以古玉時代玉器, 由於玉料加上雕刻技術上的限制,不可能做出大件玉器. 就是發展到鑽鉈也並不可能.能坐人的玉檯椅, 只能以現代工具做成.

傳統古玉辨偽, 是把玉件的雕刻與形式, 與同時期的出土玉件相比, 再看玉面上雕玉時留下的工具痕跡. 然後觀察泌色與包漿. 但紅山玉器大部份已外流, 有實據出土的, 並不能完全代表紅山玉器. 但红山玉器, 實有自己文化的特點, 這些雕刻與形式的特點, 將在最後討論. 在辨偽上在這裏首先要看的是工具痕跡, 與泌色及包漿, 也就是化學風化所留下的玉面變化.玉面的觀察是以40倍的體視顯微鏡,工具痕跡與化學風化留下的變化要以顯微鏡才能辨認出,是辨偽的主要工具.

 

工具留痕

2004年大英博物館發表了一篇論文,(The identification of carving techniques on Chinese jade, Margaret Sax, Nigel D. Meek, Carol Michaelson, Andrew P. Middleton; Journal of Archaeological Science 31 (2004) 1413-1428). 作者把六件大英博物館所藏中國玉器玉面上的工具留痕打模, 然後用電子顯微鏡檢看所得模型, 以鑒定留痕是從那種工具所留下. 六件玉器中有一件紅山玉鳥. 但在玉鳥上, 並没有找到留痕, 唯一 找到的是在掛洞中的頂上兩洞相接處, 留有拉線切割的痕跡. 紅山玉器被埋在地下有五六千年, 可說是世上埋在地下最久被雕刻過的軟玉, 因而化學風化的程度最深, 而風化可把工具痕跡遮蓋. 且紅山玉器主要是磨製, 平滑的玉面經打磨後, 留下極少的工具痕跡, 鳥獸人物的刻劃, 主要是用淺而寬的坑. 線條也是淺而寬(圖3), 眼鼻都是宊出

山文化紅
圖3,寬而淺的坑

的圓雕(圖4), 篇首人獸像的眼, 鼻與嘴, 就是一個極佳的寫照. 切割是沾上 解玉沙再拉繩,圖5的

紅山玉器
圖4 磨製宊出的眼鼻嘴

嘴部, 便是拉 繩切割而成, 由於是拉繩的關係, 嘴內的平面並不是完全平坦.

紅山玉器
圖5 拉繩切割的嘴

 

紅山玉器雕刻, 最為人知曉的便是那同面斜穿牛鼻洞, 但紅山玉器不是每件都有穿洞, 小件的大部份帶有洞, 而大件的如篇首的獸人與圖4的的獸頭便没有洞,尤於大部份小件都有洞,所以這些洞應是用以把玉掛在身上的掛洞, 也是説紅山小件玉器都是掛件. 洞有對穿如圖6. 另一種 只見於紅山玉

紅山玉器
圖6 玉鳥對穿洞

器上的是同面斜穿洞(圖7), 雖然一般以為這些同面斜穿洞, 尤於在鑽洞時,鑽在玉面 是斜進,

紅山文化
圖7 紅山同面斜穿掛洞

所以一邊便成牛鼻狀.其實這些洞大 部份是圓洞.牛鼻洞可見在C字龍上(圖8,9). 但C字龍上

紅山文化
圖8 C字龍與豬龍上的洞
山文化紅
圖8 C字龍與豬龍上的洞

的牛鼻洞是對穿洞, 對穿洞是鑽在玉面上九十度下直鑽,所以牛鼻這部份, 並不是鑽洞時所需要, 圖8豬龍與C字龍的合件,豬龍的圓洞便没有這牛鼻部份.C字龍上洞的牛鼻 都是指向相反方向, 圖8的 C字龍牛鼻一邊指向下, 一邊指向上.圖9 上C字龍洞的牛鼻,是一邊指向前, 一邊指向後, 這些牛鼻洞反

I紅山文化
圖9. C字龍對穿牛鼻洞


IMG_1793

圖9a. C字龍上牛鼻洞前後不同指向

方向指向, 或許有特別的意義. 但這意義現已不可知.對穿牛鼻洞只見於C字龍上, 没有例外,豬龍上的都是對穿圓洞(圖8與10). 這些圓洞的作用都應是掛洞.

紅山文化
圖10 .豬龍獸上對穿圓洞

紅山玉器上的同面斜穿掛洞(圖7)在紅山文化消失後, 也在中國玉器上消失, 中國玉 器上的掛洞只有對穿洞, 這同面斜穿洞一直要到二十世紀, 紅山偽玉大規模出現,才在中國重現. 所以如果在一件說是漢代玉器上, 看到這斜穿洞, 就可以知道,這是一件現代作品. 然而這同面斜穿洞早就在日本根附上出現(圖11). 根附與紅山小件玉器極為相似, 根附只知最先出現在曰本江戶時代, 但源於何人與

圖11. 曰本根附上同面斜穿洞

年月, 無人知曉. 紅山遺圵的被發現是二十世紀初, 日人鳥居龍藏在內蒙越過遼上京, 不用尋便直接找到红山遺圵, 他當時是被邀到內蒙講學,不是考古,而他卻能往荒遠的紅山方向直走, 有如他知道紅山遺圵所在,這都是巧合嗎? 在没有証據下, 只能如是説. 但不能排除的是, 有紅山玉器, 在江戶時期, 便流至日本.

除了對穿與斜穿洞外, 紅山玉器還有一個並不完全穿過的洞(圖12).這洞是用解玉沙

圖12 獸臉後勾雲形器中圓洞

鑽出, 洞壁平滑, 雖洞內滿是化學風化所留下的副產礦物, 但還可看到一些淺而不規則的解玉沙留下的鑽紋(圖13), 現代鑽具留下的痕跡是深而規則,有如螺絲釘所留下的痕跡, 這洞底中間平坦, 而

紅山文化
圖13 圓洞壁與底

周邊比中間低陷, 洞底只有在邊上有明顯的鑽紋. 做成這洞底是因為鑽是中空.有以這些鑽是竹, 但竹的硬度不夠, 獸類的臂與腿長骨應更為合理, 且在石器時代, 骨器便己雜在石器中使用. 中空的鑽加解玉沙只在洞邊往下鑽.洞的中間便成一石蕊, 到底後把石蕊打掉,再把洞底打磨這洞便形成. 這直徑二厘米的洞是在一17.5X15.75厘米大件玉器中, 大件玉器一般没有洞, 這洞是否有特殊意義或用途, 現己不可知.

紅山玉器面上極少有工具留痕, 如能認出現代工具的痕跡, 便能辨出紅山玉器的贗品. 但辨偽最重要的, 還是能認識化學風化留在玉面上的變化.

 

軟玉的基本認識

中國玉器藏家從來都知道古玉上有泌色, 作偽的贗品也是在泌色上著手. 但為什麼古玉上有泌色, 從没有人知道, 也没有人發問, 贗品能成功欺騙, 主要是在泌色上作假, 所以泌色的認識在古玉辨偽上極為重要. 泌色的由來是大自然的化學風化, 要明白化學風化, 首先就要知道什麼是玉. 早在東漢, 許慎”説文解字” 便有”玉, 石之美者”的解釋, 那是說玉是石. 但嚴格來説玉並不是石, 因為石是由多種礦物組成, 而玉是礦物的一種. 礦物簡單來説是大自然有晶體結構的化學合成物, 所以玉是化學合成, 也是晶體. 中國玉器在明代以前都是軟玉, 所以這裏只談軟玉與軟玉的風化. 軟玉是閃石(Amphibole)類的一種, 應注意的是, 這些中文翻譯被稱為石的, 都是礦物而不是石, 軟玉含有透閃石(Tremolite), 與陽起石(Actinolite), 透閃與陽起都是礦物.各地出的軟玉透閃與陽起的比例可以不同, 因而有不同的顏色, 透閃與陽起都是含鈣, 鎂與鐵的矽酸鹽(silicate), 鐵是軟玉顏色的來源, 鐵可給予玉綠, 青, 黃,褐 與黑色, 氧化後的鐵可成銹紅色. 透閃含鎂高,鐵少故白, 陽起含鐵高,所以有綠青黃褐等顏色. 一件軟玉在比例上透閃含量多,顏色便接近羊脂, 但如陽起含量多, 玉便有青綠黃等顏色. 含高量透閃的和田玉便是羊脂白玉, 現今中國的國家規格, 含80%以上透閃的軟玉, 不問出處, 便是和田玉. 鐡也是籽玉皮上紅與黃顏色的來因, 籽玉面上的鐵被氧化, 紅黃顏色便出現(圖14),籽玉皮上的顏色, 也是從化學風化而來,這與古玉面上的風化,有同等的原因與道理, 但為什麼籽玉顏色只在皮上,這些以下再加詳述.

russian nephrite 1
圖14 褐紅皮色籽玉

透閃與陽起的晶體結構極為相似, 晶體都是如纖維狀(圖15). 這些晶體互相纏結成捆狀.

tremolite
圖15 捆狀纖維晶體

由於捆與捆間容易分開, 但纖維難折斷. 所以軟玉易裂難斷. 也因此玉料常有裂痕, 晶體的結構做成普通顯微鏡下也看不到的微孔與微裂紋(圖16). 玉晶體的結構與風化做成的玉面變化有極大關係.

tremolite sem (2)
圖16 電子顯微鏡下的軟玉晶體

 

軟玉的風化

岩石都是由各種不同的礦物所組成, 而岩石也是地球地殼的基礎, 在盤古初開, 地球形成的時期, 包括在海洋下的地殼, 都是岩石所造成, 地殼岩石的出處是高熱高壓的地幔冷卻而成, 這些本在高熱高壓環境下的礦物, 進入了地殼的低熱低壓環境而成不穩定, 礦物便進入化學風化變為在低熱低壓地殻環境下穩定的礦物, 數十億萬年的風化, 中間經過多種礦物的轉變,使岩石最終變成泥土, 泥土是由多種粘土, 沙,有機物品與水組合而成,有了泥土才能有植物, 有了植物才能有動物, 所以可以說, 没有化學風化便没有人類. 以人類的時間算,化學風化是一個極慢的程序, 數萬年乃至數十萬年. 被埋在地下的上古玉器, 因為本身也是礦物, 也會進入風化而使不同的礦物產生. 但由於古玉器被埋的時間短暫, 最長也只有六七千年, 玉器的風化只在面上.
風化可分自然風化與化學風化. 自然風化是大自然的風吹雨打, 霜雪冷熱變化, 自然風化使岩石碎裂成小塊, 碎石再經化學風化變質而變成另種礦物. 水是化學風化最主要成份. 天氣對礦物的風化有極大影響. 溫帶乾旱地區風化比較慢, 熱帶潮濕地區風化比較嚴重. 礦石的轉角, 裂痕與低陷地方, 因受流水的影響最大, 也是風化比較嚴重的地方.水滲進玉面而使玉進入化學風化, 最初的階段是玉面的溶解與離子的流失(dissolution and leeching). 玉含的鈣, 鎂,鐵與矽都會被溶解而跟著水流失, 在比例上矽的溶解 與流失比較少,化學成份的改變引至晶體結構的失去而成為無定形矽酸鹽(amorphous silicate). 無定形矽酸鹽出現在玉面上,一般人以為是鈣化, 但這些肉眼看到以為是白粉的, 在40X顯微鏡下有他的特別型狀(圖17). 無定形矽酸鹽的成因是由於水對玉的溶解,

I周
圖17玉面上無定形矽酸鹽

當玉器在雕刻的過程中, 大量玉屑留在玉面上尤其是在雕線, 鑽洞與低陷間, 這些都是玉件完工後作打磨時有困難達到的地方, 這些地方因此留下大量玉 屑,而這些低陷處也最能聚水, 水把玉屑溶解, 大量無定形矽酸鹽便出現在鑽洞與低陷處,做成了古玉面上的模式(圖18)

紅山文化
圖18玉面上 無定形矽酸鹽

從溶解與流失, 玉面上的矽酸鹽進入化學上的水解與氧化(hydrolysis and oxidation).次礦物(secondary products)因而產生. 不同的礦物會產生不同的次礦物. 輝石類(amphibole) 的軟玉所產生的是粘土類的蒙脱石族(smectite), 與高嶺石(kaolinite), 及氧化鐵類的赤鐵礦(hematite), 與針鐵礦(goethite). 蒙脫與高嶺如無雜質, 是白至灰色. 赤鐵是深紅至褐紅, 但也能是深灰色. 針鐵是黃色, 或紅至深褐色. 但也能是黒色. 這些顏色就是古玉面上的泌色. 次礦物的形成是靠水與礦物的水解與氧化, 所以一定要有水與礦物的接觸, 水能滲入玉面極有限, 一般實驗室所能確定的是100至150 埃( Angstrom). 次礦物的形成是在玉面上微孔與微裂裏, 次礦物慢慢地使玉面的颜色改變, 起初是失去了玉的晶瑩,玉被埋愈久,次礦物形成愈多, 玉的 顏色便變成次礦物的顏色, 要看那種次礦物形成最多, 顏色改變由白至灰白, 黃, 褐紅, 甚而黑,玉的泌色因此形成.玉本身其實並没有改變, 玉件還是軟玉, 改變的只是面上極薄, 薄至肉眼都分不開的面上一層, 由於水的滲進極有限而不能往下滲,溶解與流失在玉面上的持續, 使微孔往旁擴大做成玉面上有如失去一小片皮的薄洞. 微洞有如被堵塞,次礦物便溢出至玉面上, 次礦物在玉面上結晶, 多種晶體的不同結構與顏色, 加上微洞色變, 做成了肉眼所看到的泌色與包漿. 圖20是一宋代的玉蛙,紅褐的泌色是

IM
圖20 宋代玉蛙

微孔內氧化鐵的顏色. 還可看到的是玉面上薄薄的一層其他次礦物. 微孔裏的氧化鐵使玉蛙變為褐紅色, 但從蛙眼的頂部没有泌色的地方, 還可看到這蛙本是一件羊脂白玉. 次礦物在玉面微孔形成而產生玉面色變與籽玉皮成因大致相同(圖14).籽玉在河中玉面上也發生同樣化學風化的變化, 但形成的次礦物大部份被沖走, 没有被沖走的便構成了玉皮的顏色, 圖14的籽玉紅黃顏色是來自氧化鐵, 白色是粘土的層狀矽酸鹽.形成的次礦物都是在皮面上没有深進.没有次礦物在的玉面部份,應保有玉的颜色, 但次礦物還是有在微孔裏而使玉色暗淡微黃, 要把這表層磨掉, 才能看到晶瑩白玉.圖21是一漢代玉獸. 暗黃的泌色是微孔裏蒙脫與高嶺來的色素. 玉獸的眼睛, 耳朵與利牙, 還是保有本

IMHan beast
圖21 漢玉獸

有白玉的玉色. 這件玉獸是件傳世玉, 傳世玉經世代藏家的盤玩, 磨擦與洗刮使玉面上的次礦物被刮除而不存在, 傳世玉因而能看到玉面上化學風化產生的留痕. 圖22是40X顯微鏡下的玉獸玉面局

20Han beast
圖22 玉獸40X局部

部, 肉眼雖看不到, 但在顯微鏡下,右邊的薄層是没有被盤玩刮除而留下的灰白色無定形與層狀矽酸鹽. 最顯眼是褐色的, 由溶解與流失所做成的薄洞. 溶解與流失使微洞口擴大, 洞口繼而相互連接而成如一小片玉皮流失, 形狀不規則的薄洞. 化學反應做成洞底的質子化層(protonation layer) .含鐵的質子化層常是黒與褐色.因為是從化學反應而來, 質子化層就是用超音波也不能徐去. 圖中有兩條紅箭頭指向的白線, 這兩條白線在顯微鏡的燈光下, 是銀白金屬反光的線, 這些金屬反光直線常可在古玉面上看到, 因為反光的角度不是九十度, 要看到這些金屬線,要把玉件拿在手裏放進顯微鏡的焦點, 然後把玉件上下傾斜轉移, 從多種角度斜看玉面. 其實斜看玉面才可看到次礦物的厚度與次礦物不同的晶體結構, 圖22右邊有如塊狀的次礦物晶體,是一般在顯微鏡下所應見. 金屬反光線是因次礦物含鐵, 一般的線是銀白色, 但金黃色的反光線偶而有見. 反光的金屬也不一定是直線. 在圖23的紅山獸人上,可看到這樣的局部放大的玉面(圖24), 無定形與層狀矽酸鹽晶體構成在玉面上, 紅

17紅山文化
圖23 紅山獸人

 

17i_LI
圖24, 紅山獸人次礦物
9b紅山文化
圖25 紅山獸騎虫
9h_LI
圖26. 獸騎虫上金屬次礦物

色圈內是金黃色的反光金屬體附在層狀矽酸鹽的邊上, 層狀矽酸鹽(phyllosilicate) 是屬於粘土的蒙脫與高嶺的晶體結構. 這些晶體是片狀的層疊, 斜看玉面才能看到這些不同厚度如塊狀的晶體與微隆的邊如圖24. 雜在次礦物中, 常見一至數粒銀白反光金屬(圖25,26).

古玉的泌色與玉面上本有的晶瑩與色澤的失去與改變, 可以說全是化學風化產生的次礦物所做成.玉面的變化是來自次礦物的晶體結構. 微小的晶體只以肉眼觀看能做成誤導, 玉面上的晶體要以40X的體視微鏡才能淸楚地觀察. 一般以為玉面上的凹凸不平, 是玉面上的破損, 做偽便以高壓噴沙來仿傚. 但玉面並不是如噴沙所做成的破損, 而是如漢玉獸面上失去一小片皮(圖21與22). 要看到玉面只能把面上的次礦物去除. 但紅山玉器要至二十世紀初才出現, 紅山玉器没有傳世玉, 再加上紅山玉器是中國被埋最長時間的玉器, 紅山玉器面上滿佈風化產生的次礦物. 這些結成晶體的礦物就是做成玉面上凹凸不平, 看似破損的原因. 圖8的豬龍C字龍面上看似滿是殘破, 但在顯微鏡下原因便清楚現出(圖27). 作為次礦物屬於粘土的蒙脫與高嶺及氧化鐵的赤鐵與針鐵在微孔

32i紅山文化
圖27豬龍 C字龍面上晶體結構1

中產生,當在產生時這些次礦物混合成有如含鐡的糊(ferruginous). 次礦物溢出至玉面上要過一二千年才能結晶成晶體. 這個從溶解與流失至晶體成結構的時間極長, 所以由晶體結構做成的泌色只能在宋以前的玉器上看到. 玉被埋愈久, 這些晶體也愈多, 因此紅山玉器面上, 都有極深刻的變化. 粘土的蒙脫與高嶺晶體是層狀, 重疊的晶體在顯微鏡下成塊狀. 但在同一玉件上, 不同的部位會有不同的晶體結構與不同的厚度, 圖27左邊與右邊的晶體,厚薄與形狀便有不同. 圖28是豬龍C字龍上

32紅山文化
圖28 豬龍C字龍晶體結構2

的另一部位. 與圖27的晶體比, 圖28雜有細長纖維狀的晶體. 而這些不同的晶體,都是在同一件玉器上. 晶體不一樣是 因為蒙脫是個總稱,蒙脫包有二十多種的粘土, 而高嶺也有數種, 他們的晶體雖然都是層狀矽酸鹽, 但不同的粘土能有不完全相同的晶體結構, 再加上粘土能雜上氧化鐵, 所以一件玉器上不同的部位, 能有不同的晶體結構,型狀,厚度與顏色,也就是肉眼所看到古玉的凹凸不平, 有如殘破的原因. 偽紅山玉面上全是一個式樣, 認清玉面上複雜的變化, 是極佳的辨偽工具.

玉面上風化的厚度, 就是說面上產生的晶體加上微孔內的泌色, 只是玉面上0.1至0.2毫米. 就是把玉件切片, 只是以肉眼看也容易被忽略. 變化只發生在如此薄的面上, 但就能使古玉觀賞者 以為是整件玉器的改變. 古玉有一般人以為是墳墓氣息的特殊氣味, 這是由於粘土類的蒙脫與高嶺在玉面上的產生.礦物有氣味的不多, 但粘土是有氣味的礦物之一. 粘土就是給予泥土的特有氣味, 風化使粘土在玉面上產生, 產生在玉面上的粘土氣味, 就是古玉上一般人以為是墳墓氣息的特有氣味的來因. 在時間上,次礦物的粘土要有二千年才能有足夠的產生發出氣味, 一般只在漢以前的古玉, 才能有這種特殊氣息.

在化學地質上, 大自然的礦物可產生不同的變化, 而這種變化, 也可產生在玉面上的次礦物上, 圖27豬龍C字龍玉面上形成的次礦物, 在右邊有兩塊比較厚的矽酸鹽(圖29). 與層狀矽酸

32i紅山文化
圖29豬龍C字龍面上的假象

鹽不同,這些晶體有如軟玉的梱狀纖維晶體(圖15,16). 但這些晶體是在玉面上, 故不可能是軟玉晶體. 這是假象(pseudomorph拉丁文的意義是假體) 的形成, 假象形成是一種礦物變成另一種礦物但保有本來的晶體結構.( 詳細解釋可看這網站上拙作Chemical Weathering). 假象可在玉面上長成粒狀如圖30紅山獸人上所見. 假象在化學質上不是軟玉, 也不是次礦物. 而是其他礦物. 假象的形

11紅山文化
圖30 紅山獸人玉面假象

成都是多粒, 多粒的假象可以在全件玉器上如圖30與圖7. 但也可只見在玉件的低陷聚水處. 圖31的

4m紅山文化
圖31 紅山獸人臂彎下假象

假象是在這篇首的紅山獸人的臂彎下. 在玉面上如能看到假象的形成, 便可知這是一件曾經風化的真古玉.

在古玉上有些部位有如能看到玉的本來色澤, 偽古玉以一片深色的顏料漆在面上間以没有漆的玉面以模倣真古玉, 但由於微孔内都是次礦物, 就是看到玉面, 也不能是玉的本有颜色.圖32 是圖8的豬龍C字龍玉面局部, 夾在層狀矽酸鹽與氧化鐵間是一片如淡青色的玉面, 但小心看便可見,

32n2紅山文化
圖32 豬龍C字龍上半透明矽酸鹽

這並不是玉面, 而是一塊半透明的矽酸鹽薄片.圍繞著這薄片是微隆的邊. 兩紅箭頭間是一條銀白的金屬線. 這些半透明薄片常可看到在古玉面上, 圖33是圖10的紅山豬龍獸玉面上的另一局部. 這薄片塊是從矽酸鹽與氧化鐵合成而來, 故在薄片裏常 見有黑與褐色斑點, 這些斑點並不是一般以為的

31c1紅山文化
圖33 豬獸上半透明薄片

炭點, 而是氧化鐵的inclusions,中文翻譯應是包括物. 氧化鐵inclusions 是包在半透明矽酸鹽片內. 層狀矽酸鹽晶體, 還可見在晶片上. 由於玉面上的變化是從矽酸鹽與氧化鐵從微孔中溢出至玉面上結成晶體後的成因, 所以許多以為在玉裏的現象, 其實是在玉面上. 圖34的漢玉獸環看似整件變了

13aHan
圖34漢玉獸環

褐紅色, 但這泌色是來自玉面上厚薄不同的赤鐵礦物蓋在玉面上而來(圖35). 圖36是一紅山 虫獸,

13lHan
圖35 玉面上赤鐵礦

同樣的這虫獸有如變成了紅褐色, 但在顯微鏡下, 可看到這泌色是從玉面上不同的次礦物形成而來

33d紅山文化
圖36 紅山虫獸

(圖37). 泌色是由兩種以上氧化鐵與粘土所構成, 不同的晶體做成玉面上不同的颜色與厚度(圖38).

33f紅山文化
圖37 虫獸面上不同晶體結構1
33h紅山文化
圖38 虫獸上不同晶體結構2

這些晶體一層疊在另一層上有如虫獸上的殼. 虫獸的不同部位, 有不同的晶體與結構(圖37), 這些複雜變化, 只能在顯微鏡下看到. 也不是贗品所能偽造到. 許多看似在玉面上如 圖38的裂痕, 其實是在次礦物晶體薄片上, 而不是在玉件裏.

紅山玉器因為是埋藏最久, 玉面上的晶體結構也最複雜, 玉面上的顏色變化最多, 圖39是一紅山玉鷹, 玉鷹的前面(圖40), 與後面(圖41) 晶體與顏色全然不同.在紅山玉器上, 因為 年代

34a紅山文化
圖39 紅山玉鷹

 

圖40,41. 玉鷹前與後

久遠, 常可看到其他古玉看不到的泌色. 圖42紅山鳥人上 赤鐵Hematite 晶體(42a) 的形成, 在中國古玉,只能見於紅山玉器上.

36紅山文化
圖42 紅山鳥人
36c
圖42a 鳥人面上赤鐵晶體

圖43紅山虫鳥面上有明顯的多種不同的次礦物, 但特別的次礦物是在鑽洞裏(44). 針鐵晶體在鑽洞

109-紅山文化
圖43 紅山虫鳥

形成. 針鐵晶體在鑽洞中形成只能見於紅山玉器上.就是在紅山玉器上也並不常見, 這鑽洞針鐵晶體

Hongshan bird 109-1 and 2needle hematite crystal 1
圖44 虫鳥鑽洞針鐵晶體

只有在另一紅山玉器上見到. 圖45是一紅山獸虫與 獸虫鑽洞內針鐵晶體(圖46).

35紅山文化
圖 45 紅山獸虫
35b
圖46 獸虫鑽洞內針鐵晶體

如果把軟玉加熱, 軟玉的顏色便變灰然後白, 熱度使軟玉的礦物發生變化成為一硬度比較低的礦物, 軟玉不再是軟玉, 用這種燒過的玉料做成玉器, 便是一般所説的雞骨白. 中國玉器只有浚家灘玉器可說全是雞骨白(圖47). 良渚玉器只有部份是雞骨白, 淩家灘與部份良渚玉器, 都是用

203-1
圖47 凌家灘雞骨白玉龍頭

燒過的玉料雕成.雞骨白不是從風化而來, 如果不是把玉料加熱後再雕, 不管把玉埋在土裏多久, 都不會變成雞骨白,軟玉風化不能產生雞骨白礦物, 如果有玉器不是淩家灘或良渚, 而説是紅山或商, 周, 漢雞骨白, 就應知道這是現代膺品.

 

    紅山玉器與文化思想

 

Elizabeth Childs – Johnson 所寫的文章 “Jades of the Hongshan culture : the dragon and the fertility cult worship”  https://www.persee.fr/doc/arasi_0004-3958_1991_num_46_1_1303 詳細報導了所有發掘來的出土紅山玉器. 可惜的是這些玉器極為有限, 大件的有C字龍, 豬龍, 勾雲形器, 小件的有豬龍, 龜, 鳥, 方及圓珠飾物. 但只是這些並不能完全代表紅山玉器及文化. 紅山玉器製作精美, 藝術成份高. 以一個新石器時代文化,, 在風格上雖有異, 但在藝術上可説能直追商周. 紅山玉器以3至8厘米的小件為多, 小件大部份有掛洞, 應是掛在身上的掛件. 大件的有見至18厘米, 勾雲形器可至28厘米(圖48), 除了這勾雲形器外, 過15厘米的大件玉

147-1
圖48 勾雲形器

器, 如篇首的獸人, 與圖37的虫獸都没有掛洞,應是擺件. 勾雲形器頂上中間有一掛洞, 可以繩繫在脖上, 兩邊還各有一細長的洞, 以繩穿過這兩洞, 可把勾雲形器繫在胸前. 勾雲形器應為族中首領或宗教領袖所佩戴. 勾雲形器頂上的掛洞是對穿牛鼻洞, 一般對穿洞是個圓洞,在鑽洞技術上來說這牛鼻部份並不需要, 對穿牛鼻洞只見於C字龍與勾雲形器上, 這牛鼻洞是否含有宗教意義, 那就只能作猜測而不可確知. 但如在C字龍或勾雲形器上, 没有看到這對穿, 但不同指向的牛鼻, 那這件玉器的真偽, 就值得懷疑.

紅山玉器最為人知曉的應是豬龍與C字龍. 一般都以為這是中國龍的所始.C字龍比較少見(圖8,9). 豬龍卻常見與獸組合. 圖8豬龍在C字龍背上. 圖10豬龍在獸上, 圖49是豬龍在獸上面對

1b
圖49 豬龍與獸面向同方向

同一方向, 圖50是獸在豬龍上,面向相反方向. 在紅山文化玉器,前後相反方向是常見, 這與牛鼻洞的

27b
圖50 豬龍與獸面向相反

相反指向, 應有同等的意義, 這點往下再說. 圖51的豬龍加了一雙人腿使成半人. 圖52是豬龍與一有

144-2
圖51 有腿豬龍

翅的獸合成, 與其他的豬龍獸合成有不同, 圖52的豬龍有如在變, 豬龍的頭部已不是豬龍而成為有

113-2
圖52 豬龍與有翅獸

翅的獸, 除了圖8的豬龍在C字龍的背上外, 所有與豬龍合成的都是與獸, 且變化不同,豬龍與獸或許有一特别關連.

紅山玉器如果不是全部, 應可說大部份含有宗教信仰的思想. 在紅山遺址中發掘 出的彩陶無底圓筒(圖1) 被發現並排放在大型墓室周圍, 且因是無底不可能是有用的器皿, 學者以為這圓筒含宗教意義 . 這無底圓筒也可見於紅山玉器上.圖53的無底圓筒上是一只龜, 圖54的鳥人腳上

圖53 龜爬無底圓筒

圖54 鳥人腳上無底圓筒

放的是個無底圓筒, 從這兩玉件来看,無底圓筒應與動物與人有關, 但真正的宗教意義不能確知. 圖55的鳥頭頂著個瓶, 不可知的是這看來是個現代花瓶是否也是無底圓筒的一種.然而這像花瓶的玉

131-1
圖55 鳥頂瓶

瓶不單只見在這玉鳥頭上, 圖56是一個形式大致相同的商代玉瓶, 由於瓶上雕的鳥與獸也見在青銅

305-1
圖56 商代玉瓶

器上, 此瓶應是祭祀 用的禮器而不是花瓶, 但青銅器裏並没有這花瓶樣形式, 那極有可能這商代玉瓶是承自紅山. 也是説這鳥頂的瓶與這商代的瓶, 在宗教上有同等的用途與意義.

紅山遺址發現的女神廟及出土泥塑孕婦像, 皆指出紅山宗教包有女性與生殖崇拜. 彩陶無底圓筒也見於玉器上, 毫無疑問紅山玉器是紅山宗教的結晶, 玉器雕刻出紅山宗教的思想, 而女性也肯定地反影在玉器上. 在古玉中紅山是唯一的玉器把女性身段描述,雕出隆起的胸部. 圖57的鳥

130-1 - Copy
圖57 女鳥人

人頭部雖是只鳥, 但身段是明顯的女性. 圖58的獸人隆起的胸部, 肯定了她的性别, 她頭上有兩半弧

19A
圖58 女獸人

形如角狀物體一直延伸至胸, 雖説這可能是獸角, 但也有可能是紅山時代女性髮型. 圖59是另一女

28b
圖59 女獸人

獸人. 除了頭上雙耳, 她的樣貌較椄近人. 紅山的 雕刻,女性眼睛都是圓型, 另一種眼睛是杏型見於男性, 圓眼也見於大部份的鳥與虫, 而杏眼見於大部份獸與獸人, 紅山遺址還出土了泥塑孕婦(圖2), 可惜這些孕婦都只有身而没有頭, 從玉器上看這些泥塑孕婦的頭也有可能是鳥或獸. 圖60是一大肚

 

102-2
圖60 紅山孕獸

子懷孕的獸. 獸人雙手前扶與圖57女鳥人相同, 手的掩蓋不能確定懷孕獸人是否有如女鳥人的隆胸.注意這孕獸的眼是以線條描出,左右兩眼以一梁相連, 紅山玉器的眼一般是把眼旁磨低使眼浮宊出,而這種以線條描繪且左右相連 的眼只見於在豬龍上. 所以這獸的頭是豬龍, 而頭上是C字龍的冠.在這篇我們己看到豬龍是與其他獸合成最多, 且也能變化,, 圖60溶合了豬龍,C字龍與有孕的人獸. 懷孕是生, 玉器埋在墓葬是死,這種人, 鳥, 虫, 獸相互生死交替, 難保不就是紅山的宗教思想.. 圖61是

2a
圖61 獸人

一杏眼的獸人, 一般杏眼是男性. 圖61的獸人並不例外. 注意獸人頭上的角能與圖58女獸人的角相比. 不排除的這是紅山男性髮型. 獸人在男女上還有一個分别, 男獸人大多是蹲著, 女獸人大多是跪坐. 泥塑的孕婦都是站著, 圖60的孕獸是女或是男值得思考.

在豬龍與獸的合件, 豬龍與獸可各對同一或相反方向(圖49,50). 這種同與反方向還可見於獸與鳥的合件. 圖62a,b 的合件, 獸與鳥面向前後不同方向. 圖63a,b 的合件, 獸與鳥面同向前.

 

106-1
圖62a 獸鳥合件前

 

106-2
圖62a 獸鳥合件後
105-1
圖63a 獸鳥合件前

 

105-2
圖63b 獸鳥合件後

紅山把人, 獸, 鳥與虫相互混合,62與63的獸鳥或可解釋為鳥的離開與進入獸人. 但前後相反與同向的觀念, 在紅山玉器上是明確的. 圖64的鳥站在獸人頭上向前看. 這鳥獸合件本是一對, 可惜在我收

30b
圖64 鳥站獸人

藏中只有一件, 另一件的鳥站在獸人頭上是向後看.

紅山玉器最為人知曉的是豬龍與C字龍, 且因簡單易彷, 在偽玉市場上豬龍與C字龍也是最多見. 然而在真紅山玉器上, 豬龍有見與獸合成,C字龍並不常見. 紅山玉器最多的是獸人與鳥或虫的合成. 紅山的雕刻可説是多采多姿, 每件玉器有他的特點, 深深表達出紅山藝人的創造性與個别的思想與藝術. 圖65a,b 是獸人與兩只虫在頭上的合成. 獸也見坐在虫上(圖25). 圖66a,b 的獸人

3c
圖65a 獸人與雙虫合成

 

3b
圖65b 獸人與雙虫合成
11e (2)
圖66a 獸人頭頂小獸人
11f (2)
圖66b 獸人頭頂小獸人

 

上頂著的是一小獸人. 圖67a,b 獸人頭上鳥. 圖68a,b 雙獸在獸人頭上. 值得注意的是獸鳥虫不只

 

26a
圖67a 獸人頭上鳥
26d
圖67b 獸人頭上鳥

有獸鳥虫的特徵, 而是 一個混成, 圖65的雙虫有鳥翅, 圖67的鳥前面看像只獸, 圖66的小獸人臉可

 

24b
圖68a 獸人頭上雙獸
24c (2)
圖68b 獸人頭上雙獸

 

與圖67的鳥臉相比, 圖68雙獸可與圖65的雙虫相比. 這種人獸鳥虫的相互混合變化, 有可能是紅山人民對生命的看法, 表現在玉器雕刻上.

一般以為紅山是個六千年前的史前文化, 在技術與藝術上都應落後, 因而市面上紅山偽玉器都是簡而陋. 其實紅山雕玉藝人有極高的技術與藝術思想, 直可比美現代藝人. 圖69a,b,c是一獸蟬合成, 玉件前後是獸與蟬, 底部是蟬的臉. 這玉件的雕刻,充份表現出紅山藝人的創意與獨宊

 

4b (2)
圖69a 獸蟬合件獸臉
4a (3)
圖69b 獸蟬合件背蟬
4c (2)
圖69c 獸蟬合件底蟬臉

風格, 與後期中國玉器相比, 不見遜色. 這種三面雕的手法也只見於紅山. 圖70a,b,c 是兩人臉, 背後是一蛙, 人臉是上下相反方向, 這别具風格的三面雕, 成功地把兩人與蛙合成. 把70a的人臉與69c的

141-2
圖70abc 三面雕正反人臉與背面蛙

141-1141-3 (2)

圖70abc 三面雕正反人臉與背面蛙

蟬臉相比,可看出兩臉的相同.69c的蟬臉也是人臉.紅山玉器上的人獸鳥虫混合的觀念是一致.

 

紅山玉器上的人大多是獸頭人身. 圖71a,b 是人首上伏一虫. 虫的翅在人耳後兩旁下伸.

 

6c
圖71a 人首上伏虫
6d (3)
圖71b 人首上伏虫

圖72a,b是人臉下有兩腳, 頭上也是伏一虫. 與71a,b的虫相比,72a,b的虫如有一鳥頭. 紅山的獸極少

 

29a
圖72b 人臉與虫
29c
圖72b 人臉與虫

有人臉. 圖73a,b,c是 一獸, 獸頭的後面是一張人臉, 但從側面看, 這人臉應是個面具. 這獸背後人臉

 

20a
圖73a 獸與人臉面具
20c
圖73b 獸與人臉面具
20d
圖73c 獸與人臉面具

面具在紅山後, 在中國玉器上完全消失, 但在19世紀卻出現在曰本根附上(圖74a,b). 這也是巧合嗎?難説.

 

 

圖74ab. 曰本根附

 

紅山至漢

獸在紅山玉器上是常見的雕刻, 但獸在紅山文化消失後. 還見於中國文物上.獸臉出現在商代青銅器上. 圖75是圖54 玉瓶上的獸臉. 商代的獸臉是否源自紅山是没法考據. 圖76 是圖64 鳥

305-1 (3)
圖75商瓶獸臉

站獸人的獸臉. 圖77是圖12勾雲形器前面的獸臉. 這獸臉與勾雲形器是一合件, 所以應有極 大的宗

30a (2)
圖76 鳥站獸人獸臉

教意義. 這三獸臉的相同處實不可忽視. 但如果商代的獸真的是來自紅山, 那這獸臉為何如此重要

148-1
圖77 勾雲形器合件上獸臉

下傳至商代的祭禮? 圖78是一良渚蝴蝶形器, 這蝴蝶形器下面的像是一獸臉. 良渚玉器從來没有獸

Liangzhu plaque)
圖78 良渚蝶形器獸臉

或獸臉的雕刻, 這蝴蝶形器是唯一刻有獸臉. 圖79是另一良渚蝴蝶形器, 這蝴蝶形器上刻兩良渚神

良渚神獸
圖79 良渚蝴蝶形器神獸

獸, 上面没鼻的是良渚人皇標誌, 下面有鼻的是皇祖標誌.( 參看本網站拙作”良渚神人神獸的意義, 及其宗教中心思想”). 圖78上的獸臉所佔是皇祖的位置, 這也告訴了我們獸是皇祖, 所以獸臉被刻在商代祭皇祖的青銅器上是極有原因.

獸臉在周代還可見於銅器上.圖80是一周代獸臉玉璧. 璧上紋飾雖已簡化,但没有疑問還可知是獸臉.

2019-06-29 16.13.23 (2)
圖80 周獸臉壁

至漢代獸臉還可見. 圖81a,b是一漢代玉印. 印鈕是一獸, 四面各雕有一獸臉. 印面雕的是”黃漢起

2019-06-29 16.06.29 (2)
圖81a 漢黃蓋印

 

2019-06-29 16.07.49 (2)
圖81a 漢黃蓋印

印”四字. 這是蜀漢黃蓋的印章, 獸臉也許是蜀漢皇室的標誌. 紅山獸及獸臉, 與良渚皇祖靈之所寄的鳥,自漢後在中國歷史上消失不復見. 也許是這種中國上古信仰, 在唐代被外來彿教的宗教信仰代替淘汰了的原因.

 

紅山文化思想

紅山遺下的玉器, 就有如一片窗戶, 能讓我們一窺六千年前當時的社會. 紅山對雌雄的分別非常明顯, 不論是人, 獸, 鳥, 虫. 圓眼的是雌, 杏眼的是雄. 大部份是圓眼的鳥, 也能見到杏眼的雄鳥(圖82).

Jade-60 (2)
圖82. 杏眼雄鳥.

且雌雄是相反的相對(圖83). 這雙雌雄獸合在同一件玉器上, 但卻各自面向相反方向,這陰陽相反,與

雌雄雙獸
圖83. 雌獸相反合一

C字龍上的牛鼻洞的相反指向, 及同一件玉器上的獸舆鳥,面向相反方向,不難是以後的陰陽相反合一的思想源頭.

紅山玉器的C字龍, 豬龍, 蹄形器等, 都是人所知曉. 一般都認為C字龍與豬龍同是中國龍的前身,然而有極多紅山玉器是獸,鳥,虫與人的合件. 這些雕刻應自有意義. 這些人,獸, 鳥, 虫可以説是變體(zoomorphic), 但如圖52的豬龍虫鳥的合件, 也有可能是形變(therianthropes). 紅山有女神廟遺址, 裸體孕婦像發現在女神廟, 應是屬於生殖崇拜. 而玉器是埋在棺槨墓地. 所以玉器所表示應與生死有關, 而與女神廟的生殖崇拜有不同. 紅山的獸人, 與良渚的有鼻神獸, 都是已死的王祖的代表, 這人,獸,鳥與虫, 應是死後的相互形變的代表. 也是說紅山文化的信仰, 是與人死後輪回托身的思想相同. 死後輪回托生(reincarnation or transmigration), 存在於古今中外的宗教信仰, 從印度, 古希臘, 羅馬, 以至北美及澳洲土著, 都有死後輪回托生的思想, 這種人類共有的對生死及其他生物的關係的宗教信仰, 不難也存在在紅山的宗教思想, 而表現在玉器上.

 

良渚文化神人神獸的意義及其宗教中心思想

何炳聯寫於 2010. 重寫2017.

Jade-150

神人神獸的意義

位於長江下游太湖流域地區的良渚文化 (3300 BC-2200 BC),在中國歷史上消先了四千多年,直到1936年才重新被發現.從七十到八十年代後,大批良渚遺址在福泉山,反山,瑤山,匯觀山等地被發現.良渚的堆土高台祭壇,重新被國人認識.良渚遺留下大批精美的玉器,也留給了我們許多難以解釋的謎.一個在新石器時代,在農耕技術,蠶絲紡織,玉器雕刻, 與最近發現的水利工程等,都比同時期文化進步的社會,存在了一千多年,而在一個極短的時間內,消失無蹤.在中國歷史上雖無記載,但在商周文物上,卻可看到良渚留下的影響.同以難解釋的是,在許多良渚遺留下的玉器上,刻有一神獸(圖一,二),

 

202-2 (2)
神獸像

與一神人像(圖八,十),此兩像與良渚的宗教文化有極大關系,可說是代表良渚文化的特徵.但這兩像看似熟悉而又陌生,神獸是人是獸,像上的紋,有猜是虎紋,也有以為是鳥紋.神人被描寫為威嚴裝重,身披皮甲.一般人都以為這是良渚所供奉的神,但這究為何物,始終無定論.其實良渚神獸神人,包含了良渚人民的宗教思想,對中華文化的形成,有極大影嚮.本文在此,對神人神獸的意義,及良渚文化的宗教思想,試作一解答.

神獸是人

良渚神獸應被區分為有二(圖一), 在這三叉型器上, 這兩像是明顯的分開,上面的像是一雙重圈眼,下加一橫攩.琮對角上所刻,無例外地必是此像,或是此像的簡化.而刻在神人身上,必是三叉型器下面的另一像,一雙重圈眼,再加鼻與橫欓的神獸.兩像相差可說只有一個鼻.雖則兩神獸像都有單獨見刻於

良渚神獸
圖一

玉器上,但在玉琮對角上刻的是無鼻神獸像,及神人身上是有鼻神獸像,均無例外.也就是說這兩像在玉器上有不同的用途,也應各有不同的意義.要明白這些像究代表何物,就得研討像上的紋飾.神獸主要是一雙重圈眼,圈上有三組直線紋,兩眼之間與眼下橫欓,飾以橢圓形捲線紋以直線相連(圖二).神

圖二
圖二

獸實是一張人臉面的刻寫,人臉無皮下脂肪,把皮拉下後,便可見到臉上肌肉(圖三).環眼的肌肉名為Orbicularis Oculi, Orbicularis 中文翻譯是如軌道的圈,Ociuli 是眼睛,此肌肉的紋路,就是環眼的

facial muscle a (2)
圖三

重圈,極薄的直紋肌肉,與眼上的神經與眼旁的筋,都可給良渚人三組直線的印象( 圖四).神獸像上其

eye muscle (2)
圖四

他紋飾,橢圓的捲線紋與直線紋,不單見在神獸,且滿刻在神人身上.這些紋飾與環眼紋飾相同,也是人身上的肌肉紋.肌肉的組織是由許多細長的肌肉纖維組成小梱,然後由薄膜包成裡肌梱.數多裡肌梱

Skeletal_Muscle_Fibers
圖五

組合成肌肉(圖五), 所以從正面看肌肉是細長的直線(圖六),而肌肉的橫切面,就是一團一團的捲紋

muscle 1 (2)
圖六
muscle cross section 3
圖七

(圖七).浙江考古研究所內的琮王上的神人身上紋飾與神人畫像上的捲紋與直線紋(圖八),與人體肌

玉琮神人
圖八

肉紋相比較,便能看到兩者的相同處.而最具說服力的是浙江省文物局所藏的玉冠狀器(圖九),此器為

良渚玉冠狀器
圖九

一透雕神人像,此神人身人所刻的紋飾,就是肌肉的正面及橫切面紋飾描述.神人及神獸像上紋飾,實為人臉及人體上的肌肉紋.但良渚人為何把肌肉紋刻在神獸與神人身上?肌肉在良渚文化土有何意義?神人又是誰?要解答這些問題,我們先來分析神人的形像.

 

神人是誰?

img055 (2)
圖十

神人是一被雕在一些玉璜與玉琮上的像(圖十),此像頭戴羽冠, 有以這羽冠中間突起的是鳥喙,羽冠下是一張倒梯形臉.神人全身滿雕著肌肉紋,而神人臉的最突出點是只有這臉沒有肌肉紋.臉上雙眼圓瞪,鼻子空洞,嘴露牙齒.如把人臉上的皮拉下,再把肌肉割除,看到的應便是此臉面, 神人臉為一無皮肉的人臉面,在古代禮祭的儀式,把人的皮肉拿掉是有此可能.,<說文.示部>的字,都與禮祭有關.從這些字,可看到古代禮祭的儀式及意義,禍這個字,<說文,示部>:”禍,害也,神不福也,從示,骨聲.”但在甲骨文禍並不從示,禍是咼字,<說文.咼部>:”咼,剔人肉置其骨也.”所以把人肉剔至骨,是古禮祭的一個儀式,神人的臉可以代表死亡,神人胸腹為一帶鼻神獸像.再往下看,在神獸嘴部橫欓下,有六個尖銳物體,一般看法,此為神獸嘴的利牙,但也有以為是鳥爪.這有鼻的神獸像,也常見被單獨刻在一件玉器上,當他單獨出現,不與神人在一起時,從沒看到有牙齒.也就是說神獸並没有利牙,看到這六個尖銳物體時,一定有神人雙腳在,而且沿著雙腳線條的伸延,不難可看到,這些是連在腳上的鳥爪.在良渚文化裏,三是常見的數目.且都是與禮祭或神人神獸有關,如三叉形器,重圈內有三組直紋,祭壇是三層方台疊成,與這裏每只腳上有三只鳥爪等,都是成三.神人是鳥也是人,臉部含有死亡的意義.神人是誰?要知道,首先要認識幾個良渚與大汶口的早期字符號.大汶口的早期字符號與良渚字符號有許多相同, 首先要看的是大汶口的皇字(圖十一),大汶口皇字李學勤先生以為字的上半,有羽冠的意義, 而下半

img054 (5)
圖十一

是一倒梯型的框, 神人頭戴羽冠(圖十),冠下是一倒梯型的臉,神人的頭就是一個皇字, 也就是說神人是皇. 但神人羽冠代表鳥, 腳是鳥爪, 中國上古神話有許多皇與日與鳥的相互關連,<山海經.大荒南經>,”羲和者,帝俊之妻,生十日”.帝俊兒子應為皇.十皇為十日.而日中有鳥,<山海經.大荒東經>,”湯谷上有扶木,一日方至,一日方出,皆載於鳥”.而后羿射日這故事,把這皇與日與鳥的關系,表現無為.<楚辭.天問>王逸注云:”堯命羿仰射十日,中其九日,日中九鳥皆死,墮其羽翼”. 皇是日,但墮回地上的是鳥. 鳥應是皇的媒介,日中的鳥也是皇的代表. 除了神人神獸, 鳥也常被刻在良渚玉器上, 這鳥站的長框, 可見在一些良渚玉壁上(圖十二). 長框在甲骨文上的意義是土(圖十三). 李學勤先生以為這長框

img054 (3)                                                                           圖十二

也可念為山字,所以這鳥站的長框便可念為一土堆成的小山,框內的鳥代表皇,山旁有梯級往上,到頂

甲骨文土 (3)
圖十三

有一平坦祭壇,壇上有一靈鳥.一般良渚祭壇都是由三層方台建成,框的上半兩邊也是三級,無疑這鳥站長框所代表的就是良渚的堆土祭壇. 堆土祭壇上葬的是皇, 框內是只代表皇的鳥, 也是說皇被葬在壇內,壇上的鳥,是代表皇的媒介.死後的皇的靈,便附成在鳥而站在壇上.皇死後的靈附在鳥上,但這靈的出處應是從皇的肌肉.甲骨文的祭字(圖十四),說文解釋,”祭,祭祀也,從示,以手持肉”,甲骨文祭字

 

祭字 (3)
圖十四

左邊是肉, 右邊是手, 肉舆手間是下滴的血. 有以有血下滴的生肉是為祭品,奉獻給神祖為食物.但這說法有所不妥,因鼎為煮肉及放已煮熟肉的器皿,(玉篇.鼎)”鼎’器也.所以熟食者”,而鼎也是用以祭祀的重要禮器,所以祭祀用的肉應是煮熟的肉.而不是有血下滴的生肉,以手持有血下滴的生肉,奉獻給神祖為食物的說法, 並不成理.説文上說祭字從示,”示”的意義是神也是祖,所以祭祀的對象是神祖.但甲骨文祭字並没有從示, 示要到金文才在祭字上出現.那就是說以手持有血下滴的肉,已包含了示的意義. 而這有血下滴的肉,應就是神與祖的代表. 肌肉是神祖所在.肌肉紋刻在神人身上, 是說神人不單是皇且是神祖.

代表良渚堆土祭壇的鳥站長框並不只一個, 在另一玉璧上刻有這一式樣(圖十五). 與圖十二不同是框內並不是代表皇的鳥, 而是一個大汶口與良渚的靈字(圖十六). 這靈字是由一日及一月所組成.而

 

img054 (4)
圖十五

 

img053 (2)
圖十六

框內靈字日的部份飾以捲紋(圖十七),良渚的捲紋是肌肉的橫切面. 整個意義是皇靈在日, 站在祭壇

img053 (4)
圖十七

上(框上) 的鳥, 把皇祖的靈, 載至日中, <山海經.大荒東經>,”湯谷上有扶木,一日方至,一日方出,皆載於鳥” , 便有了意義.

總括來說,神人的臉面代表已死去的皇.皇的靈成為神祖,有鼻的獸面為神祖的臉面,也成了皇祖的特徵與代表,神人的靈或轉化為鳥, 或被鳥載至日中.鳥是皇神靈所在.雖則皇祖的靈與肌肉的關係的思想,在中華文化裏消失,但皇為神祖而成為被拜祭的對象, 與祖宗崇拜,也就是說夏商周文化及後世的拜祭祖先應始於良渚.

兩神獸所代表.

神獸像有二,刻在神人身上的有鼻臉像,應為神祖的標誌,此像也見單獨刻於用以祭禮的三叉形器或半圓形器上,(圖十八,杭州歷史文化研究所藏).應為被拜祭的對象.而在玉琮(圖十九)對角, 與玉銊(圖

IMG_3486 (2)
圖十八
201-3
國十九

二十) 所刻,均為無鼻的神獸像,玉琮代表皇權, 玉銊代表軍權,這像應是皇權擁有人的代表,也就是人

209-1
圖二十

皇的徽號,此像也見刻於玉珠(圖二十一),或玉鐲(浙江歷史文化研究所藏)上,這應都是人皇身上的飾

206-2
圖二十一

物,再一說明這無鼻的臉面,是人皇徽號,刻在皇者身上飾物為標誌.也代表了擁有這些玉器的人皇.這兩臉面代表不同,一為神祖,另一為人皇,兩者都並不是獸,但所代表不同,兩像應被分開認清.

 

良渚宗教思想與對後世影響

從神人神獸, 可看到良渚的信仰是皇祖崇拜. 祖宗崇拜在中國,一直延至今,殷商的宗教思想與良渚宗教思想有極大的相同.”商代信仰主要有上帝,天地間自然神祗和祖先神三大信仰系統.”(宋鎮豪: <夏商社會生活史>,第459頁),禮祭是向各直系或旁系先王,甚而先妣先母等祖先祈福求祐.在其自然崇拜中,包括了天地日月,山川河岳等諸神.但上帝在商人中,是最至高無上,”商代宗教信仰的最大特點就是對上帝的崇拜,對祖先的崇拜和祭祀.”(史仲文,胡曉林:中國古代歷史文化的品性與特色.<中國全史>)但上帝其實也是皇祖,先王死後升天而成帝,”人王死後也可以稱帝.從武乙到帝乙,殷王對於死了的生父都以帝稱.”(胡厚宣:殷墟卜辭中的上帝和王帝,<歷史研究>1959年,第10期),所以可以說商代的宗教主要是皇祖的拜祭.良渚神人為良渚社會的神祖,也是被拜祭的對像.就這點已可看到這兩宗教文化有極大相同. 再有良渚的堆土祭壇與夏商周社壇有許多相同,文獻記載中的有關夏商周三代的社壇,都可在良渚文化祭壇找到印証.江林昌先生引述了陳剩勇先生在(中國第一王朝的崛起)所提出的六點,封土為社,社壇成方形,社壇用多種顏色泥土堆築,社壇為露天,社壇築在高地,社周圍有大樹等.結論是”中原夏商周社壇正是淵源于良渚文化祭壇.”(中國上古文明考論 321-322頁).祭壇的相同,意味著禮祭儀式的相同. 再看 大汶口靈山這字(圖二十二), 這靈字是由日月與山所組成,日月是

img054 (2)
圖二十二

天山是地, 這是說靈在天地間, 這與商代的天地間自然神祇的信仰,有著明顯的相同,實不可忽視.

良渚的宗教思相,不單在祖宗崇拜上與夏商周宗教有極大相同,且許多夏商周的信仰,可以追至良渚文化上. 中國上古神話的皇與日與鳥的相互關連,可在良渚文化中看到影子, 圖二十二的靈字是指皇之靈,也是光芒四射的太陽,下為山,也可作為土字.江林昌先生說”帝字皇字,都具光明之義,有明顯的太陽神特點.”(中國上古文明考論,395頁),皇字有太陽的意義從何而來?良渚靈字日的部份刻有肌肉紋, 是皇祖的靈所在. 皇祖與日關連的思想,在良渚時期己存在. 鳥是皇祖的靈與日的媒介. 鳥把皇靈帶至日, 所以中國上古的鳥與日, 如金沙四鳥環日(圖二十三), 與河姆渡的雙鳥拱陽, 都應有皇祖的意義在內.

金沙 (2)
圖二十三

從商周至漢

鳥在皇祖崇拜中佔有極重要的地位.商代禮祭拜祖用的玉器(圖二十四) 與銅器,都刻有烏的形像.

305-1
圖二十四

人更自以是玄鳥的後代.《詩經·商頌·玄鳥》”天命玄鳥,降而生商.” 商人的禮祭是皇祖的崇拜,而鳥是皇祖神靈所在,從這不難看出,為何商人自以為玄鳥所生.商代的玉印(圖二十五)上所刻的商字,便是一鳥.

IMG_1809 (2)
圖二十五

 

時至東周春秋時期, 鳥篆(圖二十六)出現在吳越楚等南方地區, 鳥篆是書法的一種, 字的筆劃, 是以

IMG_2235 (2)
圖二十六

鳥形成,而吳越所在, 是長江出口良渚地區. 出土的越王勾踐劍上所刻的十六字, 便是以鳥篆書寫, 勾踐劍是越王的倍葬物, 用鳥篆書寫應是說鳥篆是皇祖的語言文字, 這鳥能與皇祖互通的觀念的源頭,應是良渚. 良渚思想遺留至周代吳越地區,可從以下兩玉環上看到. 圖二十七的玉環前後各刻有四個鳥

(圖二十七)

篆, 玉環極厚, 邊上也刻了四個鳥篆, 這環應是周代吳越地區的玉器. 另一玉環有同一模式與厚度, 應也是周代吳越地區的玉器(圖二十八), 此玉環前後素面, 但在邊上卻刻有三個形象. 這三個臉象雖

(圖二十八)

與良渚神獸有異, 但也不難看出, 這是良渚的有鼻神獸, 皇祖的標誌, 越王勾踐劍上的鳥篆是四字一句共四句十六字,刻有鳥篆的玉環上都是四個字, 而這臉面是三個, 在良渚文化上, 與皇祖有關的數目都是三, 進一步說明, 這環上臉面, 是良渚皇祖, 也証明了良渚的宗教思想, 至周代還留在吳越地區.

含有宗教意義的鳥, 至漢代還見刻在玉壁上(圖二十九).西漢南越王墓內的玉壁, 與圖三十的玉壁上,

IMG_1909 (2)
圖二十九

都刻有鳥頭的人物. 鳥至唐代在玉器上消失, 偶而有見也只是裝飾, 失去了宗教的意義. 唐代外地宗

(圖三十)

教由西方傳入, 尤其是佛教, 代去了中華本有的宗教思想, 良渚思想也不能例外, 彿教成了中國的主流宗教思想, 雖則彿教並沒有祖宗崇拜的成份, 而祖宗崇拜還是在中國廣大流傳 以至現今社會. 可見良渚時期的思想, 還是深在中華文化裏.

 

參考書目

江林昌:<中國上古文明考論>,上海教育出版社,2005.

Henry Gray:<Anatomy of the Human Body>,Philadelphia:Lea and Febiger 1918

良渚文化博物館,香港中文大學文物館,<東方文明之光 良渚文化玉器>,1998

巖文明:<良渚文化與中國文明的起源>.良渚博物院,2009.

柳志青,柳翔:<良渚文化玉髺梳與玉梟齗代特徵>,浙江大學.

劉斌:<良渚文化發現與研究>,浙江文物局,2006.

方向明:<良渚玉器的種類及其紋飾>,浙江文物局,2006.

何崝主編,<簡明篆刻正字字典>,湖北美術出版社.

姜玉梅,<從(說文)示部字看中國的祭祀文化>,(華夏文化),2009年第01期.

蔣衛東,<浙江桐鄉新地里遺址發掘概況>,浙江省文物考古研究所.

史仲文,胡曉林,<中國全史>,人民出版社.

謝濟,<上帝崇拜在商代宗教信仰中的地位>,紀念殷商甲骨文發現一百周年國際學術研討會論文集.

Mesoamerican Jadeite – The Tlazolteotl

Fig. 1
Fig.1. Jadeite Tlazoteotl

Introduction.

Ten years ago, as a tourist in a remote Central America tourist destination (not Mexico), I saw a street peddler, selling stone made tourist items. Behind all his poorly made uninteresting items was a single green stone statue that stood out as unique. With no knowledge of the South American culture, the first thing that came to my mind was Chinese fake jades coming to Central America. Curiosity drove me to picked up the statue and looked at it carefully. The statue was a handmade jadeite. Part of it was done by chipping and flicking, a technique not used by Chinese jade carvers ancient or recent. This could not be Chinese made. As it fitted into my category of souvenir with a local flavor I decided to buy it. After a short hackle, the man agreed to sell the statue for 75 US dollars. Later research showed that a similar statue was in the Dumbarton Oaks collection, the Aztec goddess Tlazolteotl carved between the late 15th and early 16th century. Tlazolteotl was a goddess of filth and vice, especially sins of sexual misdeeds. Paradoxically she also was the patroness for forgiving sins of such misdeeds, and a purifier for sins and diseases caused by these sexual transgressions. These seemingly contradicting believes made her the goddess of purification, steam bath, midwives, filth and adulterers and appropriately as a statue of a woman giving birth. At the time these were interesting but not for long. It was promptly forgotten and ignored for ten years, sitting among my other memorabilia from my travels.  Recently when I was researching for Chemical weathering on buried nephrite jades, I came across the article, “The Dumbarton Oaks Tlazolteotl: looking beneath the surface “, by Jane MACLAREN WALSH, JOURNAL DE LA SOCIÉTÉ DES AMERICANISTATE, 2008, 94-1. “  (To read the article and to see a picture of the Dumbarton Oaks Tlazolteotl , click on the following link). http://journals.openedition.org/jsa/8623   The Dumbarton Oaks Tlazolteotl was found to be made in the 19th century. The jadeite Tlazoteotl in my collection was taken out and looked at carefully under a 40X stereomicroscope. It is my belief that the existence of a jadeite Tlazolteotl and the finding on the statue deserve to be known. All of the descriptions and history of the Dumbarton Oaks Tlazolteotl are based on the detail study by Jane Maclaren Walsh in her article.

 

Comparison  of the Dumbarton Oaks Tlazolteotl and the jadeite Tlazolteotl.

The jadeite Tlazoteotl seen above, measures 14 cm in height, 8cm in width from side of knee to side of knee, and 8 cm front to back also taken from the level of her knees.  This makes the jadeite a smaller statue than the 20 cm tall Dumbarton Oaks.  It is made of a pale solid green jadeite. Unlike the Dumbarton Oaks Tlazoteotl which is in a sitting position, the jadeite Tlazoteotl is in a squatting position with her buttock above ground  squatting squarely on her feet. Also unlike the Dumbarton Oaks Tlazoteotl who has her neck extended, head tiled backward with a grimace expression, the jadeite Tlazoteotl faces forward with an expression of regret and sorrow, as if she is going to cry, a face of a woman in depression. (See below fig. 3). Both her eyes and nostrils are irregular comparing to the Dumbarton Oaks Tlazoteotl. She has higher cheek bones, thicker lips

Fig 3
Fig 3 jadeite Tlazoteotl face.

and prominent eyebrows. There is no drill hole on her. Her mouth gaps open with well defined teeth on her upper jaw and no teeth on the lower jaw, a difference from the Dumbarton Oaks Tlazoteotl that has well defined teeth on both the upper and lower jaw.  It is interesting that many of the Pre-Columbian jade masks in museums only have teeth on the upper jaw. The lower jaw either has no teeth, or represents by a smooth ridge, similar to the jadeite Tlazoteolt. Fig 4 below shows the mouth of the jadeite Tlazoteotl on the left as compare to an Olmec mask from the Latin American studies, http://www.latinamericanstudies.org/olmec-masks.htm on the right. Similar finding can be seen on the Olmec mask in the Metropolitan Museum of Art https://www.metmuseum.org/art/collection/search/310279 , and in the Boston Museum of Fine Art http://www.mfa.org/collections/object/portrait-mask-36451.

On the body of the jadeite Tlazoteotl, like the Dumbarton Oaks Tlazoteotl, she has well defined clavicles. Unlike the Dumbarton Oaks Tlazoteotl that has well carved breasts with well inscribed nipples, the breasts on the jadeite Tlazoteotl are represented by two triangular masses with no nipples. Her knees are separated at 3 and 9 o’clock. Both hands are carved, holding her buttock. More differences are found between the infants of both statues.  The Dumbarton Oaks Tlazoteotl infant has a full headed of hair and well defined facial features resembling very much of an adult. The jadeite Tlazoteotl infant has no hair and less elaborate facial features. (Fig. 5)  Unlike his mother, his eyes are

Fig 5
Fig. 5 Jadeite infant

round, Both statues lower legs are angled backward, a very significant finding as to the positions they are in. The similarities between the statues give the impression that there is a relationship between the two statues. But the discrepancies are significant making it unlikely that they are copies of each others.

 

The birthing positions of Tlazoteotl 

The birthing positions of both statues in are unfamiliar to modern eyes. To understand the feasibility of the positions, I tried both positions myself. The jadeite squatting position (Fig. 6 ) was attempted first. Squatting down, the more I spread my legs the  

more I could keep my upper body upright. My lower legs angled automatically backward. If I squatted down too low, I tended to fall. By placing both of my hands underneath my buttock, I could actually lift my body slightly upward, and kept my balance. The jadeite squatting position is not only feasible, and placing both hands uner the buttock is a good way to stabilize oneself in that position.

Next I attempted the Dumbarton Oaks Tlazoteotl sitting position. ( See Fig. 3 in the Dumbarton Oaks Tlazoteotl article http://journals.openedition.org/jsa/8623 ). With myself sitting on the floor legs bent in front of me, I was unable to keep my upper body upright. The position forced me to lean backward. To support myself, I had to place both of my hands out on my sides and back. Placing my hands underneath my buttock was impossible. With my legs spread apart my lower legs bent angled forward. An attempt to bend my knees to angle my lower legs backward resulted in severe strain on both knees causing great pain. The biggest problem is the infant. In this position, as the infant emerges, his head will hit the ground, and the length of the baby will prevent him from coming out safely, unless the woman leans way back to almost flat on her back.  My conclusion is that the Dumbarton Oaks Tlazoteotl sitting position is not only impossible to obtain, but is also unsafe to give birth.

There are many versions of position to give birth today. The most common one is the woman lying on her back with her legs up spread wide apart, knees bent angling backward in stirrup.  This is a lying version of the squatting position. If you rotate the picture to put the woman’s body upright and feet down, you can see her actually is in a squatting position. The squatting position the jadeite Tlazoteotl in is a natural position to give safe birth. A woman can be in a sitting position when she is in labour. As soon as the infant is crowning, she has to go into the squatting position for delivery, especially if she is by herself.  Going into the wood by herself to give birth is a known American Indian women practice. The jadeite Tlazoteotl lacks the authoritarian, self confidence and commending  expression of nobility and goddess. Her expression shows psychological pain more so than physical, of a woman in depression, a phenomenon common during pregnancy before or after the delivery.  Such psychological trauma cannot be experienced by a man. The jadeite Tlazoteotl is more likely carved by a woman.  

 

Tool marks on the jadeite Tlazoteotl

The tool marks on the Dumbarton Oaks Tlazoteotl were thoroughly studied using Scanning Electron Microscopy on positive silicon impression technique. It iwas the tool mark study that confirmed the Dumbarton Oaks Tlazoteotl was carved in the 19th centaury. No sophisticated examination can be done on the jadeite Tlazoteolt . However examination under a 40X stereomicroscope can still yield insights into the statute. In her article, Jane MacLaren Walsh gives a detail account of Pre-Columbian lapidary technology. The tools used were essentially hard stones and various types of sand abrasives. The stone to be carved was first cut to size splitting with wood wedges,or cutting with lines or stone saws.  Techniques used for more detail carving were chipping, scrapping, grinding, filing, and piercing with solid pointed stones, all with stone tools and abrasives. Drilling were done with bamboo or bone. The surface was then polished with materials like wood and animal skins together with fine abrasives. With that in mind, lets look at the tool marks to see how the jadeite Tlazoteotl was carved. 

The first time when I picked up and looked at the jadeite Tlazoteotl, the feature that caught my eyes was these undulations that look like nodes on short intervals, on the surface of the arms. (Fig. 7 on the left picture below)  These result from chipping, or  sometimes called flinting.  An example of Neolithic knives on the right picture below shows such effect. The Neolithic carver used a sharp and hard stone tool like flint to

carve the knives. He stroked down at an angle towards the stone to be carved. As his tool hit the stone, he flicked his wrist to direct his tool upward, to avoid cutting too deep into the stone. This resulted in a shallow pit with raised edges, as seen on the stone knives. The jadeite Tlazoteotl carver then further scraped and grinded to rid of the roughness, and finally polished it into the arm. Ridges are left, giving the arm an unique look of the chipping.

The eyes of the jadeite Tlazoteotl also tell the story of how she was carved (Fig. 8).  Both eyes are almond shape, an indication that they are not drilled. The wall of the sockets

are carved straight down. The bottom of both eyes are uneven slopping up from the side to the center resulting in a small mound.  The carver used a chisel like stone tool pecking straight down on the side of the eye socket making a groove. He then went inside the eye , and with his tool slanting towards the groove on the side, he chiseled away the stone material to make the eye.  By repeating the chiseling, the stone material inside the eye eventually was all chiseled away leaving the eye formed as a void.  The result is an eye with a straight down socket wall, and a bottom sloping up from the side towards the center, as with the jadeite Tlazoteotl eyes. The eye then became a small pit, too deep for stone tools to scrape and grind and polish like he did with the arms, leaving the roughness and a small mound at the bottom.

The lines on the jadeite Tlazoteotl are crude and thick, most notably on lines that represents her hair (Fig. 9). The space between the lines are wide and uneven. The width

Fig 9)
Fig. 9. Hair

of the lines are inconsistent, with bulges at various part of the lines. The lines are filled with soil that I have not removed.  Through the exposed part and through the effect of the chemical weathering, thin scratch lines can be seen along the bottom, indicating that these lines are formed by scraping and or filing. All lines have a depth of about 2 mm.  There are frequent breakthrough and intrusion outside of the lines, more notably on her ears  (Fig. 10).  On her left ear, as the carver tried to make the line curve, and as he was

Fig. 10
Fig. 10 Left ear.

limited by his straight stone tools, to make the turn, he repeatedly file the same part of the line back and forth at a different angle, resulting in bulging of the line at the turn, and notches made by the tool going through outside the opposite side of the line. All the tool marks indicate that the jadeite Tlazoteotl was made with stone tools. The statue is not in good proportion. Her head, thighs and legs are too large for her body, and her arms too short.  She has a beauty of naiveté, often seen in Mesoamerican arts.

 

Chemical Weathering effects on the jadeite Tlazoteotl.

Appication of chemical weathering effects in Archaeology to my wishful thinking is in its infancy. In reality it probaly has not been born yet. Waiting to be recognized is that observing chemical weathering effects on buried lapidary is a great tool for Archaeology, espicially to idetify recently made forgeries. My experience with chemical weathering effect is with Chinese buried nephrite. The statute here is jadeite. Both nephrite, an amphibole, and jadeite, a pyroxene, are mafic minerals, meaning they both are silicates rich in magnesium and feric (iron).  According to scientific literatures, chemical weathering process for mafic minerals are similar, only with different secondary products produced, which can vary just by changing the location of the burial site. Changing the locality influences  greatly chemical weathering because the climate conditions are changed. Looking at the jadeite statue, the chemical weathering effect may not be exactly like that on nephrite, but they are certainly there on the statute surface.  

The first impression the jadeite statue gives is that it has two tones of color, a dark brownish color in the front, and a lighter to close to its original jadeite color on her sides and back. Black patches are on her, mostly on her front and on the infant. These are changes due to the chemical weathering effect. The main ingredient and driving force for chemical weathering is water. The amount of water available to certain part of the statue determines the amount of chemical weathering secondary products produced and that determines the color change. By looking at the color change on  the jadeite statue one can tell how she was buried. To see it, the statue is rotated to the position she was buried in with her face down.  A darker color on her face, knee and foot (Fig. 11), show roughly a water level.   The statue was buried facedown, as if she was in a puddle of

Fig. 11
Fig. 11. Rotated Jadeite statue to show the burial position.

water. More water was availble at the lower part of the soil resulting in more chemical weathering effect on the face and front of the statue.  Also noticable are lines as depressed groovs, retained water that produced secondary dark color products, making the lines appear black in color. This secondary product not only delineates the lines, but also form black patches, mostly on the front of the statue. The black color indicates that it probably is related to iron, likely an iron oxide hematite.  Looking through Olmac masks on line, the one in the Boston Museum of fine art, has similar black patches on his face.

Chemical weathering secondary products can be formed on the surface. When they form on the surface, a protonation layer where the chemical reaction took place, form. Figure 12 below shows a protonation layer covering the center mound and the wall of the socket on her right eye, as a solid blackish color layer, also seen in the recession above her eye.   Secondary products also form inside the surface micropores. As water can

 

Fig 12
Fig 12. Close up on the right eye showing the protonation layer covering the mound and the socket of the eye.

only penetrate to a very limited depth, secondary products form inside the micropores eventually behaves like a plug, causing further formed secondary products spilling onto the surface.  Figure 13 shows the secondary products inside the micropores appear as fine dots with a short length extending down. Because they form underneath the surface,

Fig 13
Fig. 13, Secondary products inside the micropores as fine dots.

they appear as if they were under water with a depth. Several kinds of minerals can be form as secondary products. In here most are black, probably an iron oxide, some have a metallic shine, and some have a greenish blue color, most likely a mineral containing copper. A larger patch of the bluish green mineral is found on the  inner wall of the right eye socket (Fig.14).

Fig.14
Fig. 14. Patch of blue green mineral inside the right eye socket.

Clay minerals as secondary product can form within the matrix of the jadeite between the jadeite crystals. It gives the jadeite a cloudy look as seen on Fig.13. As more secondary products form, the color change becomes more intense and with time, the color becomes solid giving a patina of the antique jade we all familiar with. Chemical weathering changes occur only within the surface 0.1 mm or so. The optical illusion is what gives the impression that the whole jade piece has changed into that particular color.

The Chinese fake jade makers actively simulate the chemical weathering effect on the jade surface. Such practice does not seem to occur in Latin America. Looking through the on line pictures of the Olmec masks, many of them do not seem to have a chemical weathering effect. They were made with various types of stone with no regard to the stone color of the original. The Chinese also use different types of stone. But always with a color similar to changes from chemical weathering.  To create the effect of Chemical weathering, they also use dye, usually with a color dark brown to black, and using heat and manipulating the PH of the solution to drive the dye into the nephrite to simulate the patina color. Such practice also does not seem to occur in Latin America.  To identify these forgeries the first thing to realize is that the dye comes down to inside the jade from above. In a natural chemical weathering process the secondary products are produced inside the micropores underneath and spill up to the surface. The dye goes into the jade surface through micro cracks. Under the microscope it shows up as thin lines next to a large patch of dye. In a natural chemical weathering process, the secondary products in the micropores show up as tiny dots frequently away from any large patch of dark chemical, as seen in figure 13.  The dye can also infiltrate into the matrix to give a cloudy look color change. Forgeries take a very short time, may be several days, to perform, comparing to the natural weathering process which takes several hundreds and may be thousands of years. Dye altered color change is uneven with areas with no dye showing color of the polished stone. Since the source of the changes come from the dye, large patch of dye on the surface has to be next to these changes. For the buried jade to show a matrix color change requires at least 500 years. The color change is more evenly distributed, and you may not see any dark patches or chemical on the surface.  Other techniques to make fake buried jade are using strong acid or alkaline to create a destructive burnt, easily identified under a microscope. Using sand blasting to make holes on the surface is also a frequent forgery trick. Contrary to  popular belief, holes on buried jade are not common. It can also be easily identified from natural etch pits under the microscope.

Chemical weathering can produce unusual mineral formation frequently found in drill holes. Reasons for this is drill holes can accumulate a large amount of water, and drilling also creates a large amount of fine granules that remains in a cave like space. Such fine granule when mix with water dissolves rapidly to provide substrate for subsequent chemical reactions. The space also provides a cave like environment for the minerals to develop.  The jadeite Tlazoteotl does not have drill holes. But both eyes are carved as voids providing a similar environment. We have already seen a patch of blue green mineral developed in her right eye (Fig.14). In her left eye, on the lower orbit wall, there is a tiny speck of mineral in bright orange color (Fig. 15). The nature of such mineral requires better expert assessment and explanation. Other unusual mineral found are

Fig. 15
Fig. 15 Orange mineral inside left eye.

hair like crystals inside her right eye (Fig. 16).  Similar hair like crystals are also found on buried nephrite. The exact nature of these are also unknown.  For an amateur there are

Fig.16
Fig. 16. Hair like crystals in right eye.

 

far too many unanswered questions in chemical weathering. Yet for certain it is a great tool. Its application awaits the scientific community’s exploration.

 

Discussion

For many reasons the jadeite Tlazoteotl cannot be authenticated. It has no provenance. Buying it from a street peddler as a tourist is not one. We do know it is not an item made for the tourist trade, since for the last ten years no other jadeite Tlazoteotl was seen, sold to, or bought by a tourist. It is also not an item commissioned by a dealer to sell as an antique artifact for profit. There is no dealer involved, and 75 US dollars cannot even pay for a piece of raw jadeite mineral of similar size. But there has not been a scientific research done on the statute.  Looking at pictures on line cannot be counted as one. Top it all, the account is given by an amateur whose experience with Mesoamerican artifacts is limited to one, a number not a statistic.  That the statute is Aztec, and may even be its very existence, are at best questionable. However for a meaningful discussion these two assumptions are required.

If the jadeite statue is Aztec, then is the Dumbarton Oaks Tlazoteotl a copy of the jadeite Tlazoteotl?  To answer this we must first find out where the  Dumbarton Oaks Tlazoteotl was carved. We know that the  Dumbarton Oaks Tlazoteotl was carved in the 19th century with power tools. Mexico started electricity in 1879 in Leon. It was privately owned for the textile industry, and electricity was not available to the general public until early 20th century. The Dumbarton Oaks Tlazoteotl therefore could not have been carved in Mexico. Electricity was available to the general public in Paris in 1881, and promptly spread to all segments of the society. Since all power tolls at that time needed to be invented, they had to be the most sophisticated tools available. The  Dumbarton Oaks Tlazoteotl could only be carved after 1881 in Paris, by an European artisan with an ability to carve an exact copy of the original. But the discrepancies between the two statues are too great to be an exact copy. So how did the Dumbarton Oaks Tlazoteotl come into being? To answer that we need to go back to the very beginning of the  Dumbarton Oaks Tlazoteotl story, described in detail in the Walsh article.

The story is confusing because of so many characters involved. To see clearly, all questionable characters need to be eliminated, leaving those for certain involved. The most important character was Eugène Boban Duverge (1834-1908), a French antiquarian with credentials as the official archeologist in the Mexican royal court, a member of the French Scientific Commission in Mexico, and a dealer of Mesoamerican relics in Paris.  The first description of the Dumbarton Oaks Tlazoteotl was in a note hand written by him on May 28, 1883. He also mentioned that the statue was brought in by M. Damour, a mineralogist from the Academy of Science for consultation, and Damour bought the statue from a Mr. Wan who bought it in an auction. The Mr. Wan part of the story was discredited by Walsh in her article. That puts the M. Damour part of the story in question. Hamy, the president of the Paris Amercanist Society, in his 1907 article did mention that the statue was acquired by M. Damour with no mention of where Damour obtained the statue from. In his earlier writing in 1899, Hamy wrote he saw the Statue earlier in Eugène Boban ‘s antique shop, confirming that Eugène Boban was the one selling it. It further put in question that the statue was brought in by Damour to Eugène Boban for consultation. Since Damour was a mineralogist, the reverse may be the truth. Also if Damour did not buy it from Mr. Wan, the only one he could have gotten it from would be Eugène Boban. Eugène Boban was likely the owner of the  Dumbarton Oaks Tlazoteotl from the very first beginning.

The most likely scenery of the story is that Eugène Boban commissioned the carving of the Dumbarton Oaks Tlazoteotl, and sold it to Damour in Paris as a genuine Mesoamerican artefact. Eugène Boban had a history of selling known forgeries as genuine artifacts in the Paris antique market, notably the three 19th century made crystal skulls. To carve and made the Dumbarton Oaks Tlazoteotl he must have the knowledge of the existence of such a statue. But all indication he did not see the original. As a well respected and powerful French antiquarian with credential in the Mexican royal court, in 19th century at the height of colonialism in central America, if Eugène Boban saw the original statue, he would have processed it, and if he processed it, he would have sold it in the Paris market like he did with so many genuine Mesoamerican artifacts. The fact that he did not sell an original means he could not have seen it. But if he did not see an original, how could the Dumbarton Oaks Tlazoteotl come into being. Eugène Boban came to Mexico as a teenager. He not only could speak fluent Spanish, he self taught and knew Nahuatl, an Aztec and their descendant language.  That means he not only was able to communicate with the Aztec descendants, he also had a very good relationship with them.  Also for certain, he was actively inquiring about Mesoamerican artifacts for acquisition. The existence of such a statue was related to him by the Aztec descendants. A picture based on an oral legend was drawn. The picture was the blue print for the Dumbarton Oaks Tlazoteotl, resulting in the similarities and discrepancies of the two statues.

Mysteries are wonderful. The only draw back is there may not be an answer to satisfy everyone. 

.

 

 

 

 

 

Nephrite Jade – Radix Cultura

Nephrite Jade – Radix Cultura

Edmund Ho M. D. (ephburu@yahoo.com)

Chinese culture formation can be traced back to the early Neolithic time (7000BC-5000BC). Nephrite jade appeared early in the Chinese culture as a media, expressing the essence of religion, power and wealth of the Hongshan,  Lingzhu and Lingiatan societies. The importance of the nephrite jade continued on to the subsequent dynasties, forming the root of the Chinese culture. Even till today jade still occupies an important position in China. Such importance creates value. Unfortunately value creates problem. Even as early as the Song dynasty (960 – 1279) imitation and counterfeit jade pieces of previous time were found. In today China, with the advance of technology, counterfeit antique jades become rampant to such a degree that real and unreal become blur.  On the internet, in many books and videos, identified as reference materials, all you can see are fakes. It is a cultural tragedy when so many people do not know or have a wrong  concept of what a Hongshan or Shan, Zhou jade should look like, a loss of cultural identity. The chaos  is because there is no true scientific method to identify the true period of  jade. Such deficiency and the profit that can come out of it is what creates the tumult. But is it impossible to identify the genuine antique nephrite jade of their period? The answer lies in knowing and understanding the process of chemical weathering. All rocks and minerals undergo the weathering process in nature. Jade when they are buried will be no exception. To try to understand the process, I went through many articles  from major research in the world, on the subject of amphibole chemical weathering. Eventually it makes sense to me. Using a 40X magnification stereomicroscope, such effect can be seen clearly on the jade surface.  Noting the chemical weathering changes and the tool marks left on the jade surface, makes identification possible.  This site will deal into the amphibole chemical weathering process, and how to utilize it as one of the tools to authenticate  antique Chinese jade. Chemical weathering changes on antique nephrite jade has only recently been looked into. Hopefully this blog can stimulate interest and discussion. All criticism and suggestions are welcome. Please send to my email address ephburu@yahoo.com

Nephrite fundamental

IMG_1679

Shang Dynasty ( 1766 -1122 BC )

Jade is a beautiful gem stone. With its smooth luxurious texture, glossy semi transparent appearance, top it with a pleasant white or green color, jade has been part of the Chinese culture since the Neolithic time. From the very early on, it was regarded as a stone with mystic power and the medium of choice for religious expression.   The association with religion also brought on the representation and association with power and wealth. This deep affection and the belief in the  mystic power of jade linger on turning into thinking that jade cannot deteriorate even after several thousands years of burial. In a sense it is true. Jade pieces survive several thousands of years, much better than  many other materials of the same period of time. But the deterioration is there if one looks. It is this deterioration that nature left on the jade surface that gives clues to the authenticity of the period the jade piece was carved. To understand these changes, one must know some fundamentals of the nephrite jade.

                              nephrite rich in iron                       nephrite rich in magnisium

The two different types of jade are nephrite and jadeite. Jadeite is not native to China and did not  come into China from Myanmar until the Ming dynasty. All jade pieces before the Ming dynasty are nephrite. Both jadeite and nephrite are minerals. Jadeite belongs to the pyroxene group, and nephrite belongs to the amphibole group. Both are inosilicate minerals, meaning they are silicate groups containing silicon and oxygen. They form prism or needle like crystals and contain iron and magnesium in their structure. Nephrite is a combination of two amphibole minerals, tremolite and actinolite in various ratio.  Tremolite and actinolite are both calcium magnesium iron silicate with traces of sodium and aluminum.  They share the same chemical formula, Ca²(Mg,Fe)5Si8O22(OH)², and similar physical properties with specific gravity of 2.95 (+.15, -.05). Both actinolite and tremolite have a hardness of Mosh scale 5.5 – 6, and nephrite has a Mosh scale 6 – 6.5.  The color of tremolite are white, grey, black, yellow, green, pink and purple. The pink and purple varieties are mainly found in Lawrence county New York and are not found in China. Tremolite is white when there is more magnesium in its composition, and green when there is more iron. Iron is what gives the jade yellow to green color.  Actinolite is iron rich with color of various shade of green to black. In nephrite, when the ratio of the magnesium rich tremolite is higher than the iron rich actinolite, it is white. Both of the above two samples are nephrite roughs. On the left is iron rich and green. On the right is magnesium rich and white. Today any nephrite with 90% magnesium rich tremolite, and therefore has a greasy white mutton fat color, is called Hetian regardless where it comes from.

                                  Actinolite rough                                       Tremolite rough

 

Minerals form crystals. The nephrite crystals are interlocking fibrous needles, bound together radiating out in a fan like fashion. The space between the bundles is the cleavage. which in nephrite is in two directions at about 60 and 120 degrees angles. The actinolite and tremolite specimens above show the crystal arrangement with the fibrous bundles radiating out. Because the crystals are bound tightly together interlacing, nephrite does not break easily. They are however easily cracked and separate at the cleavage. The interrelationship of the nephrite crystals are shown below in the scanning electron microscopy photos (Photos taken by Yi Bao  https://www.gia.edu/gems-gemology/fall-2014-nephrite-jade-guangxi-province-china)

Nephrite crystal
Nephrite crystals under SEM

 

Rocks and minerals have a micro pore system, a system of minute openings on the surface between crystal and grain of the mineral. Pores extend down ward in pore throats, an interconnected passage way like channels that follow the cleavage of the mineral.  Micro cracks also occur parallel or against the cleavage. The opening of these micro pores have a width of 1-2 μ. As weathering progress, the micro cracks widen to 5-10 μ. Water in the environment entering these micro pores and micro cracks, and reacting with the amphibole is the main aspect of chemical weathering. It is inside this system weathering changes take place. Below is a picture of the micro pores  http://wiki.aapg.org/Pore_system_fundamentals .  More details on the micro pore system can also be obtained from this link. http://wiki.aapg.org/Pore_systems  

Pore system
Various mineral micro pore system

 

Gem minerals including nephrite form inside the crust of the Earth, with the only exceptions of peridot and diamond  which form in the mantle.  Under high temperature and pressure of the earth crust, nephrite is formed by metasomatism of dolomite by intrusive magmatic fluids, or silicic rocks by serpentinite fluids. This results in nephrite being encased in igneous and or metamorphic rocks, mixed with small amount of other minerals, diopside, magnetite, chromite, graphite, apatite, rutile, pyrite, datolite, vesuvianite, prehnite, garnet, talc and sphene.   In China, nephrite from the Kunlun mountains are frequently associate with Pyroxene rocks, and those from the Karakash valley in Xinjiang province are frequently with Hornblende rocks.  Thus nephrite are encased in other rocks making them difficult to identify. Nephrite in the primary deposit are deep underground, encased in rocks and therefore  in general are not mined  due to the expense of necessity to remove millions tons of rocks to obtain the mineral.  With volcanic and tectonic activities, part of the primary deposit breaks off and uplifted to the surface from the crust to become the secondary deposit.  There are two types of secondary deposit, eluvial and alluvial. As the  deposit is pushed to the surface, weathering breaks down the hard encasing rocks and becomes a mount of debris with the mineral inside, forming the eluvial deposit. Nephrite mostly come from such mines probably exclusively before the Qing Dynasty. Within these mines nephrite are found encased within other minerals and rocks (坑玉).  Identifying rocks that contain nephrite within can post challenges to nephrite miners and hunters.

nephrite
Nephrite encased in crust.

 Alluvial is when the primary or secondary deposit further erodes, broken off and finds its way tumbling down a river or stream. Way to obtain the mineral is usually by panning, as in panning for gold, or dredging in a larger scale mining. Minerals can also be found in dry up river beds. In such case hydraulic washing is the way to obtain them. Nephrite pebbles in rivers are found among similar size pebbles and rocks, making them unsuitable for panning. To mine such river pebbles traditionally in China, several people walk abreast, wading across the shallow river. As they wade across, they feels the pebbles on the river bed with their feet. Experience tells them which pebble to pick up for examination. However some believe that it is more accurate to say when wadding across they look down to pick up what looks like a nephrite pebble. River nephrite pebbles are less angular, smooth, polish and smaller due to constant rolling and tumbling in the stream. Most of the pebbles have areas of reddish and other discoloration called skin. The recent high demand of nephrite jade in China has basically exhausted the Xinjiang deposits.  With unabated demands price of nephrite pebbles sky rocketed. Escalating high price brings out fake nephrite pebbles. How to identify the fake from the real nephrite pebbles becomes a problem. China in  2015 puts out a paper title “Identification Characteristics of Weathering Crust for Nephrite Gravel and its Imitation. Hui Li , Xuan Wang, Yong Zhu, Zhengyu Zhou. 5th International Conference on Information Engineering for Mechanics and Materials (ICIMM 2015)”. In the paper the authors identify three distinct points of difference between the nephrite pebbles natural weathering from the artificial applied changes.

  • Something resembling sweat pores are found on the surface of the natural weathered pebbles.  These sweat pores are irregular, varied in shape and sizes, with some of these sweat pores connected, and some have smaller sweat pores within a larger one with the appearance of an island. These sweat pores are thought to come from collision with other pebbles and rocks in the stream. The artificial sweat pores are made from sand blasting, and the pores are uniform in size and shape with edges round and smooth, unlike the natural sweat pores.
  • Nail pattern formation on the natural weathered pebbles. These pattern are  thought to be from the nephrite breaking from he primary deposit and collision in the stream. The artificial ones are more smooth and uniform.
  • Artificial color changes on the crust of the false nephrite pebbles are done by applying chemical on the surface, and hence they are brighter in color. Using ultraviolet-visible absorption spectroscopy, the absorption peak of the color changes on the natural nephrite pebbles  show iron oxides F²-, F³-, whereas the applied color changes on the false pebbles do not contain any iron.

The sweat pores described by the authors are also seen on the buried nephrite jades. From the description, these should be etch pits result from natural chemical weathering, and not from the collision with other pebbles as stated. Nephrite is probably the hardest pebble in the stream. If they collide with other stones, they are more likely to crack than to chip.  Weathering produces etch pits on nephrite surface with characteristics similar to what the paper describe. It is safe to say the pits found on the pebble are etch pits from weathering. It is hard to know what the authors refer to as the nail pattern. From the picture in the article, it seems to refer to the dendritic changes under the nephrite surface. The iron oxide formation is also seen in  buried antique nephrite. Like all minerals and rocks, the nephrite pebbles also go through chemical weathering in nature. The three observations to identify the natural nephrite pebbles from the false ones are similar to the observations used to identified the burial nephrite jade from the fake ones. These surface changes are the result of natural chemical weathering of amphibole which we are going to explore next.