Chemical Weathering

Han Disc
Han (221-206 BC)

Weathering is a natural process that breaks down all minerals and rocks and eventually transform them into soil. Without weathering there will be only rocks making plants, animals and life as we know it impossible. Such transformation leaves recognizable marks on the jade surface of burial jades as they underwent the same process similar to other minerals and rocks in a natural environment.  Under a 40X magnification, these weathering marks including amorphous silicate, phyllocilicate clay, dissolution of nephrite crystals, and formation of iron oxides and iron hydroxides can be clearly seen as demonstrated  on the Han disc magnified below.

Chemical weathering in relation to burial nephrite jade.

Weathering can be divided into physical  and chemical weathering. Physical weathering refers to rock breaking apart due to natural forces like exposure to wind and water erosion, climatic heat expansion and contraction, shear force of ice and glacial into exfoliation and so on. Chemical weathering is chemical changes of the minerals in the rocks, induced by surface water, oxygen and carbon dioxide of the atmosphere.  The result is the break down of minerals chemically and structurally, releasing cations into the environment, and eventually transform rocks into soil.  All rocks contain more than one mineral. All minerals form crystal except when they are in the amorphous phase. A mineral is in amorphous phase when it maintains its chemical composition, but has lost its shape and crystal form. It is often seen in the burial jades as the whitish greyish pasty like material on the jade surface, often mistakenly referred to as calcification.  Water is the main medium and the main driving force for chemical weathering.  Also important are other variables like a hot, cold, dry or wet climate, the composition of parent minerals with different chemicals and crystal structures, and biological changes bring in by surrounding plants, animals and bacteria in the environment. All these make chemical weathering a very complex process. Chemical weathering is a well studied science in Geology, Geochemistry, Mineralogy, Clay Mineral studies, archeology and Environmental Science. Scientific papers on the subject come from scholars around the world. Changes seen on the burial jade surface so far have eluded explanation which underlies the reason why fake burial jades are so profusely produced.  Since most burial jades are nephrite, an amphibole, knowing chemical weathering through these scientific papers on the mafic and felsic rocks; rocks and minerals that are iron rich silicates, provides a path for an authentication solution. Information comes mainly from clay mineral and geology scientific literatures. References are listed at the end of this segment.

The first stage of Chemical weathering and the formation of amorphous silicate.

Chemical weathering can be divided in two stages. Both stages can occur at the same time on the same surface of a mineral rock at various degree due to differences on the surface in drainage, micro pores size, and weakness points on the mineral, namely joints and cracks that can affect the chemical weathering effect. The mineral surface has different points of high energy, points where water flows through or retained. In burial jades high energy points are where the jade surface turns or drops off, the recesses and grooves from lines and cuts, and drill holes on the jade piece.  These are areas where most weathering effects take place. Dissolution and leaching is the first stage of weathering. As water comes into contact of the mineral surface, it reacts with the chemical by replacing the cations, and in nephrite, calcium, magnesium and iron, that leach out in a higher ratio than the silicate. The result is the loss of cations and the fibrous nephrite crystals lose their shape and become amorphous. Amorphous silicate has a whitish to greyish color and appears pasty on the jade surface. A protonated surface about 10Å is formed. This is the surface where protonation, in other word the chemical reaction, takes place. Of significance is the protonated surface cannot be cleaned by ultrasound treatment, leaving a permanent mark on the jade surface, and a clue for authentication. (Y. Noack, F. Colin, D. Nahon, J. Delvigne, and L. Michaux. Secondary-Mineral formation during Natural weathering of pyroxene: review and thermodynamic approach. American Journal of Science, Vol. 293, February 1993. P. 111 – 134.) Extensive amorphous silicate formation can be seen on the Zhou (1046 – 256 BCE) jade man shown below. Notice the more heavy concentration of the whitish amorphous silicate beside the raised lines. The lines are positive relieves, formed by cutting down on both sides turning both sides into depressed grooves that retain water. Also when the jade piece was made, it creates fine granules from the cutting and drilling.  It is well known in the scientific community that by simply breaking the mineral sample, these fine granules form. ( Mechanism of pyroxene and amphibole weathering – 1, Experimental studies of iron free minerals. Jacques Schotts, Robert A Berner and E Lennert Sjoberg; Geochimica et Comochimica Acta Vol.45, pp. 2123 -2135. 1981) These fine granules when meet with water, go into rapid dissolution skewing the scientific data. To clean them requires washing with a Hydrogen fluoride + Sulfuric acid solution. At the time the jade was made, because of the cutting and drilling, the cut lines and drill holes  accumulate a large amount of such granules. These depressions also accumulate water and are high energy points. With more water available, rapid dissolution of these fine granules takes place, resulting in high concentration of the amorphous silicate  in these depressions giving them a whitish delineated appearance well known in burial jades . The large amount of fine granules and water accumulation in drill holes also result in large amount of substrate inside the drill hole and formation of unusual secondary mineral products as we should see later.  This accumulation of fine granules in the recess areas also can be seen on newly made jade pieces, and the higher concentration of the amorphous silicate in recess areas is greatly imitated by the fake jade makers. Notice also the multiple raised relieves on the surface of the jade man, a phenomena that will be discussed later.

Weathering in the surface micro pores, a reason for color change in burial jades. 

Weathering occurs on the surface as well as in the micro pore – micro crack system. These micro cracks measure 1µm in width, and as weathering continues lens shape etch pits form parallel to the c axis of the crystal.  As more etch pits are formed, they coalesce and the micro pores enlarge widen up to 6µm. Changes on the surface is limited by water penetration, only to 0.05 µm to 0.12 µm, and sets a limit on weathering effect on the surface. Exception to this is in areas of large cracks and joints. These weaknesses allow water to penetrate deeper into the mineral as far as these cracks and joints extend. Clay minerals of  the smectite group forms. Because of the size of the micro pores, transformation is at the molecular level, by solid state topotactic mechanism, pesudomorph from nephrite to smectite. Pseudomorph is when a mineral changes  into another mineral chemically and physically without changing its shape. Smectite is a clay mineral group with at least 15 members. Their color vary from white to green, dark green close to black, yellow and brown. A yellow clayey plasma is formed.  As weathering advances, parent mineral disappears inside the etch pits and voids lined by ferruginous material known as microboxworks form. Boxworks, also call Speleothem, are mineral structure formations when mineral erodes away leaving veins of mother mineral.  Boxworks are found often in caves as seen in the picture below from the Elk Room, Wind Cave South Dakota. (Picture from the U S Park Service).  As microboxworks

The Elk Room Boxwork

form inside the micropores, they can only seen by electron microscopy. Ferruginous projections called pendants extend from the microboxworks into the void. (MICHAEL ANTHONY VELBEL. WEATHERING OF HORNBLENDE TO FERRUGINOUS PRODUCTS BY A DISSOLUTION-REPRECIPITATION MECHANISM: PETROGRAPHY AND STOICHIOMETRY. Geochimica et Cosmochimica Acta Volume 45, Issue 11, November 1981, Pages 2123-2135.)These microboxwork and pendants exhibit the phenomenon of birefringence, meaning reflective light  shine on them can only be seen at a certain angle. Several material exhibit birefringence and crystal is one of them. The specific of birefringence can be used to identify materials especially among minerals. The ferruginous material of the microboxwork are goethite, kaolinite and gibbsite. Smectite can weather into kaolinite. Both are clay minerals and such transformation occurs frequently. Hematite is also frequently found with amphibole weathering depending on the location in the world the parent mineral is from. Hematite is an iron oxide and has color of black, silvery grey, reddish brown and red. Goethite is an iron hydroxide and has color of black, brown, reddish brown and yellow. Kaolinite is a clay mineral with color of white to pale cream and yellow. Smectite has multiple members and they rang from yellow, brown, green and even black, depending on the amount of iron available. These weathering secondary products  form inside the micropores and cracks of the nephrite, giving about 0.1 mm of the nephrite surface the color of brown, reddish brown yellow and may even black, the patina color of the burial jades. The Han beast on the left, and the Song frog on the right below have lost their original nephrite color and assume the color of the clay mineral and the iron oxyhydroxide inside their surface micro pores. Chemical weathering is the reason burial jades have such color. Understanding the process is key to identify fakes.  When the burial jade pieces are looked at under the microscope obliquely, the color changes from the secondary products can be seen just underneath the surface in the micro pore system, whereas fake jades are dyed from top and remain on the surface.

Secondary products can be seen spilling out from the micro pores to form pin point dots on the jade surface as on the magnified picture below on the curve surface of the Song frog, more noticeable on the right lower corner of the picture.

Song frog
Amorphous silicate spilling out of micropores.

Chemical weathering on the nephrite jade surface and formation of ferruginous crust and phyllosilicate clay crystals.

Other than inside the micro pore system, dissolution and leaching also occur on the jade surface resulting in etch pits formation as nephrite crystals  dissolve. These pits are shallow due to the limit of water penetration. As in the micropores, when more etch pits are formed, they coalesce and enlarge. Amorphous silicate forms from leaching fills these etch pits. The surface of a Hongshan (4700 -2900 BCE) zoomorphic bird woman shown below demonstrates such effect. Notice that on the upper and lower part of the magnified picture on the right shows formation of phyllosilicate which has a yellowish shinny and grease like color with a reddish tint, an indication iron oxyhydroxide also present as weathering advances into the phyllosilicate / oxyhydroxide stage.  Phyllosilicates are clay minerals which are silicates with a  sheet like crystal structure. They can be divided into 1:1 or 2:1 clay, meaning, to put it simply, is that their structure can be 2 sheets which the Kaolin group belongs to, or 3 sheets which the smectite group belongs to. Recognizing phyllosillicate is important since they are frequently found on the surface of the burial jades.

With time and availability of water and oxygen in the enviroment, smectite forms a brown to yellow pasty plasma on the surface. This plasma like material forms a thin  filament crust on top. According to a Polish study, this filament measures 20-30 µm, about 0.2 – 0.3 mm. Because it is transparent, the presence of this filament is hard to recognize till you come across some of the jade pieces that were dropped in the past resulting in cracking of this crust. On one Liangzhgu disc (3400-2250 BC) with a diameter of 2 inches, such filament can be demonstrated. Like all Liangzhu discs, this disc  is carved only on one side.  The underside is flat. On the front, it slopes down abrutly when it comes to the side making a very sharp edge. Under the microscope, cracks can be seen on a whitish yellowish crust filament  that covers the whole jade piece. A small piece of the filament is lost, and through this window, the real jade surface can now be seen (see pictures below). Without the cracks, even under the microscope, it is difficult to recognize this crusty filament. The presence of this filament makes the jade surface looks like it has depth, as if it is under water when look through the microscope.

Natural nephrite obtain from an alluvial mine of dried up river bed are encased in a rock like crust formed from a process called encrustation pseudomorph. ( Picture below).

allevial nephrite
Partial removal of encasing rock to show the nephrite

As soon as  jade pieces were buried inside a tomb, this encrustation pseudomorph process began. This crust takes hundreds of thousand years to develop, at an estimate 50 thousand years for half a cm.  The longest burying time for Chinese burial jade is 7000 years. So the changes observed on the burial jade surface comes only from the  early stage of this encrustation pseudomorph process as the buried jade forming the crust.  Changes in association with this process occur. With available iron, Goethite/Hematite inclusion form inside the filament as seen on the back of this Zhou jade man below. These inclusions on the burial jade surface are superficial, form within the

smectite plasma filament when free iron from  leaching is available.  Black Hematite inclusions are also seen in this Han thin dragon below. Black inclusion are more

frequently found than red inclusions. Below is a Zhou jade bird with red inclusions within the plasma layer on his crown. Red inclusions are also likely hematite.

With progression of the weathering process, sheet like phyllocate (clay crystal), forms on the surface of the jade. They are more solid looking and less grease like as in the amorphous sillicate. These sheet like structures layer out and can have a reddish tint to solid reddish color indicating the presence of iron as seen on the Liangzhu (3400 – 2250 BC) disc below.  Notice the demarcation of the phyosillicate (clay crystal) coming down from the upper left corner on the magnified photograph.

Some crystal form a vein like structure as on this Hongshan (4700 -2900 BC)  pig dragon beast shown below. These are phyllosilicate clay crystals form on the surface. The formation of this uneven layer makes the surface appear it has holes on them, as

fake jade makers sand blast the surface to imitate. To appreciate this raised phyllosilicate layer the jade piece needs to be tilted to look at the surface obliquely. Only obliquely that many changes on the surface can be seen. The Xia (2700-1600 BCE) axe shown below has indistinct carvings on the surface easily contributed to aging as the cause of the loss of  image clarity. Under the microscope, the reason becomes clear. The whole surface is under cover by a hard crust of clay crystal material.  The raised nature of this clay

phyllosilicate crystal crust can be better seen if the axe is look at obliquely as below.

Xia axe
Xia axe oblique view

The brownish discoloration seen on the axe is due to iron presentation as black specs of hematite inclusions and silvery metal deposits are seen under the microscope (pictures below). The hair like patch on the right upper corner is not an artifact, as it can be found

Xia axe
Hematite formation and hair like clay crystal.

in several other burial jade pieces.  The Xia bracelet shown below also has such hair like crystal structures.

Xia bracelet
Xia bracelet with hair like clay crystal
IMG_1742 (4)
Hair like clay crystal

The exact nature of this structure is unclear. The closest resemblance is the illite crystal, a non expandable clay.

Illite crystal, a non expanding clay

Another possibility is Byssolite, an Amphibole Supergroup, a variation of Actinolite.

The presence of clay mineral on the surface of burial jades as a secondary product of chemical weathering, results in a well known phenomenon. It has long been known that some of the burial jades process an odor commonly referred to as the ‘tomb odor’. The odor does not come from the tomb, but from the clay produced on the jade. Clay is one of the few minerals that give out an odor.   As clay material is formed on the surface of burial jades from chemical weathering, under certain conditions, such clay will give out an odor that jade collectors are so familiar with, and so mistaken with its origin.

Iron oxide mineral crystal formation on jade surface and in drill holes.

The clay phyllosilicate crystals are greyish in color and sheet like. They are however not the only product from chemical weathering as ferruginous materials are also produced from the weathering process, resulting in iron oxide and hydroxide minerals on the burial jade surface.  Below is a Liangzhu plaque covered by a red crust, an indication of

Liangzhu plaque)
Liangzhu plaque

iron. ( As a side note, this plaque is very important in Chinese history, as it can easily link the Hongshan and the Liangzhu culture to the Shang culture, integrating the Chinese culture into a truly 7,000 years one linage descence.)  Under the microscope the red mineral forms crystal comparable to natural Hematite mineral as seen on a sample

Liangzhu plaque
Liangzhu plaque with red crystal formation, most likely Hematite.

below. (from Sandatlas ) 

hematite Morocco 8 cm
Natural Hematite

Natural Hematite has silvery metal deposits shown clearly in the middle of the sample above. These type of metal deposits are also frequently found on surface of burial jades. The Liangzhu bead below shows such deposit on the upper right of the magnified

photo. These metal deposits appear as droplets, and they all show the birefringence effect, seen only at a certain angle, making finding them a difficult task at time. Below is a Zhou comb that also has the  metal droplets on its surface, seen at the center of the magnified view below .

Metal droplets in association with the Hematite formation is not the only metallic finding on the burial jade surface. Small pin point like metallic shine with a bright golden yellow color are often seen on Han or older pieces. Unlike the droplets, which appear at random, these metal shines always appear in a line, be it curve or straight, and like the droplets, they also exhibit the birefringence effect. The presence of such lines can be demonstrated on the Hongshan beast below, seen in the middle of the magnified view.

This type of metallic line formation can also seen on the Han beast below.  The exact

nature of these metallic points line is uncertain. However since they always appear in a line, they probably are related to the cleavages of the nephrite jade.

As weathering products form on the jade surface they crystalize. Within the drill holes due to the presence of large amount of fine granules from the drilling, and the larger amount of water available, result in a large amount of ferruginous substrate inside a cave like space, and needle like Hematite crystal forms. Below is a Hongshan bird with a worm on its head. Within the drill hole, needle Hematite crystal forms.  This is not the

Hongshan bird with worm on head
Hongshan bird 109-1 and 2needle hematite crystal 1
Needle Hematite crystal under microscope in drill hole.

only Hongshan piece that has such crystal formation, indicating such crystals can be found in many genuine Hongshan pieces. Other crystal formations on the surface are more difficult to understand, like on this Hongshan birdman below.

Effect of cleaning on jade surface.

Chinese jade collectors have always divided collectable jades into unearthed jades (出土玉), and jades from hereditary (傳世玉),  It is difficult to understand why should there be such a division and what puts them apart, until the jades are looked at under the microscope. The unearthed ones retain all the markings from weathering, whereas the hereditary ones were cleaned by previous owners. What can be cleaned on the surface are the clay and ferruginous crust. Once this crust is removed, the protonated layer where the chemical reaction of the weathering process took place is exposed. The protonated layer cannot be clean even with ultra sound cleaning.  Also the patina color of the burial jade, caused by the clay and ferruginous material produced inside the surface micro pores cannot be cleaned. Below is a Xia mask that has been cleaned in the

past with removal of the clay and ferruginous crust. The patina which results from the clay and ferruginous material inside the surface micro pores remains unchanged. Also note the protonated layer on the nose. In spite of the cleaning, remanents of the crust are frequently found, left behind  in recess or obscure areas, as seen on the left side of the nose and the lip of the mask. Remanent of the crust is more pronounce on a thoroughly cleaned Han beast below, left behind notably on its left tail.   Removing the crust also

exposes other markings from weathering as seen on the Han cicada below. Notice the loss of  mineral crystal material on its right side of its head, both eyes and back, from the leaching and dissolution stage of weathering, resulting in shallow etch pits as if a small piece of the skin was removed, and formation of the protonated layer where the chemical reaction took place (on the magnified view).  

How much burial jades can be cleaned, and whether they can be returned to their original nephrite luster is controversial. The National Museum in Beijing China has done just that showing several of their burial jades pieces returned to their original nephrite color. This promptly leads to Western archeological communities criticism, that such feat is impossible and suspicion that  these are newly made fakes. The patina color change is due to the chemical weathering effects on the surface of the burial jade. Due to the limit of water penetration, such effect only limits to the surface 0.1 mm or so. It is therefore possible to grind off this topical 0.1 mm and the jade should return to its original nephrite color.  However by doing so will also eliminate much of the details of the surface carving. The value of the burial jades lies not in the nephrite, but in the art and spirit of the carving that reflects the thinking and culture of the carvers, people of the period of time. Any damage done to the carving will result in great loss. Further more, markings left from the chemical weathering are the strongest proof, and may be the only proof that the jade piece is authentic.  Removing these markings by grinding the surface will render the piece losing all its identity, and hence no difference from a piece made nowadays.

Raised relief on nephrite jade artifact, what it is and confirmation of chemical weathering on Nephrite jades.

The only scientific article exploring burial nephrite jade with regard to geologic mineral changes is “Raised relief on nephrite jade artifacts: observations, explanations and implications. Journal of Arcaeological Science, 40 (2013) 943-954.” by Frederick A. Cook. This is truly an excellent pioneer work in this field that deserves all the respects given to a true insight into the chemical weathering on burial jades. In this article Professor Cook investigates the notion that raised relief can be found on the surface of burial nephrite jades, and the presence of such relief if proven genuine, can be used to confirm the authenticity of the artifact.  The article provides confirmation to observations already discussed in this writing. However it also posts other questions that are worth looking into.  The article divides the raise relief into two categories.  One is a raised crystal, often single, but can be in groups.  The other is a patch or areas higher and above the observed jade surface.  These patches contain no raised crystal as in the other group, but are made up with fibrous normal nephrite crystals. Judging from the pictures of the artifact specimens in the article, one can easily see that all artifacts except number 4 the Neolithic Bi disc, and number 6 the circular bowl with a stand, the surface has been  previously cleaned. (One side note is that judging from the bird headed hunter on the circular bowl, as compared to the bird headed people on the Han disc posted at the beginning of this chemical weathering writing, the circular bowl should be a Han piece and not Tang.) The patches being referred to as raised relief appear to be the remnant of the clay phyllosilicate crust left behind after the previous cleaning. The crust is above the surface, but certainly is not raised, a reason why underneath the patch normal fibrous nephrite crystals are found.  Of some interest is specimen number 4, the Neolithic Bi Disc. This disc was not cleaned, and phyllosilicate clay on the surface is obvious, easily seen especially on the magnified view. Part of the disc was under cover from another disc. As a result less water was available on the part of the disc under cover, and that part of the disc has far less weathering effect, and hence far less clay phyllosilicate on the covered part of the disc surface, demonstrating the importance of water in chemical weathering. 

Of the two groups, group one has the true raised relief, jades with a crystal on and above the nephrite jade surface.  Raised relief are not frequently found, only may be on 5% of the burial jades.  When it occurs, they usually are multiple, as seen on the picture of specimen 6 in the Raised Relief article, the circular bowl with a stand. Also by scrolling back to the top third figure of this writing, the Zhou jade man, one can see the raised relief on the surface are also multiple. Multiplicity of the raised relief is also the case on the three Hongshan jade pieces shown below.  The first one is a squatting monster man

 with its raised relief magnified shown below. Notice the similarity of the raised relief on the monster man  and those found on the circular bowl on figure 6. 

The next is a C-dragon with raised relief as shown below.  When comparing the raised relief on the C-dragon and the monster man, one should put into consideration that the C- dragon measures 15 cm in length, whereas the monster man is only 4 cm in height. The size of the raised relief  on the two pieces may be comparable. There are  however differences between the two types of raised relieves. Those on the c-dragon are black 

C-dragon with raised relief.
C-dragon with multiple raised relief.


with silvery metal deposit on many of them, whereas  those on the monster man are lighter in color with no metal deposit found. The third raised relief example is on a squatting beast shown below. The raised relief on the beast are also different from the 

Squatting beast raised reliefe

Squatting beast with raised relief and magnified view.

raised relief on the other two Hongshan pieces. Unlike those on the other two that are crystals in a cluster, those on the squatting beast are individual crystals. They also differ in texture, smooth  with a Smokey semi transparent color and no metal deposit, a resemblance to Smoke Quartz. The differences between the raised relief on all three pieces indicate that they are probably different mineral crystals. There may be more than one kind of crystal forming raised relief.

The raised relief was thoroughly investigated scientifically in the article. Thin slides made from specimen 6, the bowl with stand, were chosen for petrographic microscopy and electron microprobe examination and analysis.  The raised relief selected is a single pyroxene crystal, a diopside on the jade surface.  There are other diopside crystals  found, all at or near the surface of the bowl. The assumption is that these pyroxene crystals are formed during the nephrite metamorphic formation. As the nephrite was pushed from the crust of the earth to the surface, hydrothermal alteration continues the alteration of the diopside to tremolite.  Since the pyroxene was present during metamorphism when the nephrite was formed, it has to be inside the nephrite before the jade piece was carved. If such is the case, the diopside should be found any where inside the nephrite, and should not only be at or near the surface. One interesting finding is that the red brown color on the surface of the bowl is limited to 0.1-0.2 mm of the surface, a finding consistent with the changes result from chemical weathering inside the surface micro pores due to the  limit of water penetration as already discussed.

The raised relief is a large crystal, in this case a diopside, intersecting the surface, and surrounded by fibrous nephrite crystals. The nephrite crystals are in two forms, a coarse altered form found immediate to the diopside crystal, which in turn are surrounded by the more fine fibrous tremolite crystals. It is felt that the diopside crystal is altering into tremolite crystals, as in hydrothermal alteration, resulting in the tremolite fibrous mass. The diopside crystal shows twinning with  coarse tremolite veins in between. Of more revealing are the electron microprobe analysis. (figure 11-12, table 2) Other than the diopside crystal and the fine and coarse tremolite crystals, hydrous phase material and chlorite are found. Because the  hydrous phase materials  are high in aluminum and magnesium it is determined that the hydrous materials are clay minerals, and chlorite will eventually alter into it. Of interest to note is that the altered tremolite, the hydrous phase material, and the chlorite are all high in iron oxide (FeO). The conclusion is that the clay is expansive. The expansion of the clay increases the volume resulting the diopside being pushed to the jade surface forming the raised relief. This conclusion is reasonable. However it does post some questions. The pushing due to the expansion of the clay is mechanical, and not gravitational dependent. Further more when the jades were buried, they were placed face up  or down or side way. So the diopside crystal can be pushed in any direction and not necessary towards the surface. This assumption cannot explain why all the raised relief are at the surface of the jade. Also a well known fact about the expansive clay is that found around building foundations. The expansion can cause cracking of the foundations leading to crumbling of the building. Clay expansion within the jade should create large cracks around the diopside crystal.  Micro cracks sre found in the round bowl specimen. Micro cracks are known to form during chemical weathering. The diameter of the micro pores on the nephrite are 1µ – 2 µ. Leaching and dissolution during chemical weathering leads to enlargement of the micro pores to 5µ and formation of micro cracks. Expansion and pushing should create much larger cracks, and with thousands of years of burial and pushing, may even lead to dislodgment of the diopside leaving behind a void. Such are not found leaving more questions to the  assumption of clay expansion theory.

Excellent studies were done on the bowl with a stand specimen. Clearly the nephrite crystals around the diopside are altering. The assumption here is the diopside is altering into nephrite as in the metamorphic process under  a hydrothermal effect. Hydrothermal activity in China concentrates in the south west. The rest of the country where the nephrite jades were buried has minimal hydrothermal activity especially in the north east where the Hongshan jades were buried, making encountering hydrothermal fluid highly unlikely. There is no doubt however that the nephrite crystals around the diopside are under going alternation.  One other explanation is that the raised relief is a pseudomorph process. Pseudomorph takes place in surface temperature and pressure and it can also exhibit twinning. The tremolite crystals are altering into diopside. In other word all raised relief are alternation pseudomorphs after Tremolite. Pseudomorph alteration also explains why all raised relief are found at the surface. Two examples of pseudomorphs are shown below for comparison  to the burial jade raise relief, a limonite  pseudomorph after Siderite,

Limonite pseudomorph after Siderite
Limonite pseudomorph after Siderite

and  a copper pseudomorph after aragonite. (picture from James St John, Wikipedia.) Regardless of what the raised relieves are, its presence should confirm the authenticity of the burial jade.

Native_copper_pseudomorph_after_aragonite,_by James St John Wakepedia,western_Bolivia
copper pseudomorph after aragonite. (From James St John, Wikipedia)

The article studies confirm nephrite chemical weathering secondary products.  Chlorite has been reported, and it eventually alters into clay minerals Smectite and Kaolinite. The secondary products have also been described as ferruginous because of the high iron content. Iron secondary minerals are iron oxide Hematite, and iron hydroxide Goethite.    MICHAEL ANTHONY VELBEL. WEATHERING OF HORNBLENDE TO FERRUGINOUS PRODUCTS BY A DISSOLUTION-REPRECIPITATION MECHANISM: PETROGRAPHY AND STOICHIOMETRY. Geochimica et Cosmochimica Acta Volume 45, Issue 11, November 1981, Pages 2123-2135.


1. Y. Noack, F. Colin, D. Nahon, J. Delvigne, and L. Michaux. Secondary-Mineral formation during Natural weathering of pyroxene: review and thermodynamic approach. American Journal of Science, Vol. 293, February 1993. P. 111 – 134.

2. M. Rozalen , M.E. Ramos F. Gervilla T. Kerestedjian S. Fiore F.J. Huertas .Dissolution study of tremolite and anthophyllite: pH effect on the reaction kinetics. Applied Geochemistry 49 (2014) 46-56

3. J. Cuadros. Clay crystal-chemical adaptability and transformation mechanisms. Clay minerals, (2012)47, 147-164.

4. D. Proust, J. Caillaud, C. Fontaine. Clay minerals in early Amphibole weathering: Tri- to Dioctahedral sequence as a function of crystallation sites in the Amphibole. The Clay Minerals Society, 2006.

5. D. Proust. Amphibole Weathering in a glaucophane-schist. Clay Mineral (1985) 20, 161-170

6. Aleksandra Daković, So this actually is wellAlessio Langella, and George E. Christidis. Clay crystal-chemical adaptability and transformation mechanisms. Clay Minerals, March 2015, v. 50, p. i-ii

7. JACQUES SCHOTT~, ROBERT A. BERNER and E. LENNART SJOHERGS. Mechanism of pyroxene and amphibole weathering-I. Experimental studies of iron-free minerals. Geochimica et Cosmochimica Acta Volume 45, Issue 11, November 1981, Pages 2123-2135

8. Robert A. Berner and Jacques Schott. Mechanism of pyroxene and amphibole weathering; II, Observations of soil grains. Am J Sci October 1, 1982 282:1214-1231; doi:10.2475/ajs.282.8.1214 

9. Frederick A. Cook. Raised relief on nephrite jade artifacts: observations, explanations and implications. Journal of Arcaeological Science, 40 (2013) 943-954.

10. Mariola Marszałek, Zofia Alexandrowicz, and Grzegorz Rzepa. Composition of weathering crusts on sandstones from natural outcrops and architectonic elements in an urban environment. Environ Sci Pollut Res Int. 2014; 21: 14023–14036.


12. M. J . WILSON. Weathering of the primary rock-forming minerals: processes, products and rates. Clay Minerals (2004) 39, 233–266.

13. Jacques Schott. X-ray photoelectron studies of the mechanism of iron silicate dissolution during weathering. Geochimica et Cosmochimica Acta
Volume 47, Issue 12, December 1983, Pages 2233-2240.

紅山玉器 – 從辨偽到紅山文化思想




紅山文化是中國五千到六千年前新石器時代史前文化. 而最為人響往的是紅山玉器, 雖說七千年前在河姆渡已見玉器的出現, 但紅山應是中國最早的玉文化. 然而在中國玉器上, 紅山玉器可説最為混亂, 網上照片所見,差不多能説全是贗 品. 稱為參考的書籍, 連書面上的照片,也是 明顯的現代偽作, 真正能看到紅山玉器的人實不多. 紅山文化要在二十世紀初才被發現, 在古玉上 紅山玉器也是最遲才被認識.中國社會科學考古研究所在80年代至二十一世紀初, 對紅山遺圵作了多次大規模發掘. 從這些發掘, 中國得來了一百件紅山玉器, 這一百件也包含了殘件, 有學者估計, 百份之九十紅山玉器, 已在發掘前流出了遺址. 但以百份之十是一百 件來算, 紅山玉器總數只是一千件. 這與市面上可能是數十萬乃至百萬件自稱紅山玉器相比,紅山玉器實極為稀少. 在連做偽紅山玉的人也不知道真紅山玉器的模樣下, 大量紅山玉器便出自在做偽玉人的幻想. 現今可說真偽没法能分.最為可悲的是, 作為中國人也不能看到自巳的文化, 紅山玉器含有六千年前中華人民的極高藝術成就, 也是紅山人民思想的結晶.並不是現今唯利是圖, 做偽玉人的低下幻想所能相比.

在上世紀八十年代初, 我有緣遇到一些上古玉求售, 當時對中國古玉並没有半點知識, 但這些玉器雕刻精緻, 且價錢相宜. 便開始了我的古玉收藏, 雜在其中有一些與一般認識的古玉不同的玉件, 就是問售與我這些玉器的人, 也不知這些玉件從何而來. 慢慢地 求售的玉器發生明顯的改變, 很多一看便知是現代偽作, 購買便因此終止. 多年來所藏給與我極大機會, 能對中國上古玉欣賞與探討, 慢慢地對上古玉有了認識, 也明白了那些與一般所知的中國玉有所不同的是紅山與良渚玉器. 然而也深明白, 有贗品雜在所藏玉器中. 尤其是紅山玉器, 因為所能知的極有限, 使真偽無法分出. 這樣一直至2007年左右, 終於悟出上古玉都曾被埋在土裏數千年. 由於玉是礦物, 而所有礦物被埋在土裏, 都會經過大自然的化學風化過程,( 請閱本網站拙作Chemical Weathering). 便搜讀各國對軟玉所屬的礦物類角閃石(Amphibole), 的化學風化研究論文, 明白了化學風化的過程, 也明白了軟玉在化學風化下所能產生的副產品(secondary products), 由於這些副產品在玉面上的形成, 做成了古玉面上的改變, 這些變化在四十倍顯微鏡觀察下, 是没法偽做. 也因此能辨出古玉的真偽. 在把贗品在藏品中抽出後, 真的紅山玉器還有五十件. 從這五十件玉器, 可一窺五六千年前紅山人民的藝術與思想. 但玉器的真偽還是重要關鍵. 所以本篇將先會討論古玉辨偽. 化學風化參考列在Chemical Weathering 篇後. 紅山文化參考在下列.

1. Sites of Hongshan Culture: The Niuheliang Archaeological Site, the Hongshanhou Archaeological Site, and Weijiawopu Archaeological Site. UNESCO.
2. Jades of the Hongshan culture : the dragon and fertility cult worship. Elizabeth Childs-Johnson.
3. 紅山文化彩陶簡論.




紅山文化地域北起內蒙南部, 南至湖北北部, 東達遼寧西部. 是集合了過千,位於熱河東北西部, 同文化村落遺址的通稱. 遺址佔地廣闊, 分佈達20萬平方公里.紅山文化最早發現於1908年, 二十世紀初曰本與法國人多次發掘, 據說所得只有一些殘陶. 1956年經北京大學正式調查, 從1983年至2003年, 中國社會科學院科學院考古研究所, 在牛梁河, 白音長汗與興隆溝等遺圵,作數次大規模正式發掘.2006年紅山正式成為中國上古保護文化.

新石器時代的紅山文化已進入農耕, 石製工具出土甚多.主要是務農與狩獵的石器. 紅山文化已進入細石器時代, 出土的細石器中, 也有做玉的工具. 陶器是精美的細泥紅陶上塗以黑彩, 紋飾都是幾何圖案, 紅山彩陶與其他新石器文化彩陶有別, 自有他的獨有性, 彩陶器主要是一般的砵, 碗,盆, 罐, 壺等日常器皿. 但最 顯著的是彩陶筒形器(圖1), 此器只見於紅山文化, 這無底圓筒並不能

圖1 彩陶無底筒形器

承載食物, 所以不可能是日用器皿,筒上塗的黑彩寬頻多層平行紋飾, 極為特別,也只見用於這些圓筒上, 由於這些高筒形器時見並排放在墓室周圍, 且是在大型墓葬中,學者以為這些圓筒與圓筒上紋飾,應含有宗教的意義. 紅山宗教的重要發現,還有牛河梁發掘出的女神廟與女神頭像. 及在喀左東山嘴祭祀遺址所發現的一批泥做小型裸體孕婦像(圖2), 顯示紅山社會可能有對生育女神與生殖力的崇拜. 而這些紅山宗教思想都反應在玉器上. 以下當加以詳述.

圖 2 裸體孕婦像




紅山文化最為人響往的應是玉器,C字龍, 勾雲形器, 馬蹄形器與豬龍等都是人所皆知. 出土的也有鳥, 龜與三孔器等. 參考列中的Elizabeth Childs Johnson篇中詳述了中國考古研究所發掘的出土玉器, 在紅山玉器參考中, 這篇中圖片也是最為可靠, 但可惜的是, 由於大部份紅山玉器已外流, 出土的只能看到紅玉器的片面, 而不能看到紅山文化在玉器上的真面目與藝術成就.

紅山玉器大部份是小件, 從三至八厘米. 但也有高至十八厘米. 勾雲形器可長至二十八厘米. 這大小其實與中國玉器尤其是古玉, 分别不大. 中國自商代已從新疆和田進口軟玉, 自古和田玉料都是從河床而來的籽玉, 所以做出的玉器, 大部份是小件, 紅山玉料不會是來自和田, 但由於紅山玉器的大小與商周時期玉器大小没大差别, 紅山玉料來源, 應也是沖積的籽玉與殘積的砊玉. 那就是說如果一件玉器比三十厘米還大, 差不多可以肯定是現代偽品. 中國要至清代, 才能進入山中開採玉料, 所以古玉時代玉器, 由於玉料加上雕刻技術上的限制,不可能做出大件玉器. 就是發展到鑽鉈也並不可能.能坐人的玉檯椅, 只能以現代工具做成.

傳統古玉辨偽, 是把玉件的雕刻與形式, 與同時期的出土玉件相比, 再看玉面上雕玉時留下的工具痕跡. 然後觀察泌色與包漿. 但紅山玉器大部份已外流, 有實據出土的, 並不能完全代表紅山玉器. 但红山玉器, 實有自己文化的特點, 這些雕刻與形式的特點, 將在最後討論. 在辨偽上在這裏首先要看的是工具痕跡, 與泌色及包漿, 也就是化學風化所留下的玉面變化.玉面的觀察是以40倍的體視顯微鏡,工具痕跡與化學風化留下的變化要以顯微鏡才能辨認出,是辨偽的主要工具.



2004年大英博物館發表了一篇論文,(The identification of carving techniques on Chinese jade, Margaret Sax, Nigel D. Meek, Carol Michaelson, Andrew P. Middleton; Journal of Archaeological Science 31 (2004) 1413-1428). 作者把六件大英博物館所藏中國玉器玉面上的工具留痕打模, 然後用電子顯微鏡檢看所得模型, 以鑒定留痕是從那種工具所留下. 六件玉器中有一件紅山玉鳥. 但在玉鳥上, 並没有找到留痕, 唯一 找到的是在掛洞中的頂上兩洞相接處, 留有拉線切割的痕跡. 紅山玉器被埋在地下有五六千年, 可說是世上埋在地下最久被雕刻過的軟玉, 因而化學風化的程度最深, 而風化可把工具痕跡遮蓋. 且紅山玉器主要是磨製, 平滑的玉面經打磨後, 留下極少的工具痕跡, 鳥獸人物的刻劃, 主要是用淺而寬的坑. 線條也是淺而寬(圖3), 眼鼻都是宊出


的圓雕(圖4), 篇首人獸像的眼, 鼻與嘴, 就是一個極佳的寫照. 切割是沾上 解玉沙再拉繩,圖5的

圖4 磨製宊出的眼鼻嘴

嘴部, 便是拉 繩切割而成, 由於是拉繩的關係, 嘴內的平面並不是完全平坦.

圖5 拉繩切割的嘴


紅山玉器雕刻, 最為人知曉的便是那同面斜穿牛鼻洞, 但紅山玉器不是每件都有穿洞, 小件的大部份帶有洞, 而大件的如篇首的獸人與圖4的的獸頭便没有洞,尤於大部份小件都有洞,所以這些洞應是用以把玉掛在身上的掛洞, 也是説紅山小件玉器都是掛件. 洞有對穿如圖6. 另一種 只見於紅山玉

圖6 玉鳥對穿洞

器上的是同面斜穿洞(圖7), 雖然一般以為這些同面斜穿洞, 尤於在鑽洞時,鑽在玉面 是斜進,

圖7 紅山同面斜穿掛洞

所以一邊便成牛鼻狀.其實這些洞大 部份是圓洞.牛鼻洞可見在C字龍上(圖8,9). 但C字龍上

圖8 C字龍與豬龍上的洞
圖8 C字龍與豬龍上的洞

的牛鼻洞是對穿洞, 對穿洞是鑽在玉面上九十度下直鑽,所以牛鼻這部份, 並不是鑽洞時所需要, 圖8豬龍與C字龍的合件,豬龍的圓洞便没有這牛鼻部份.C字龍上洞的牛鼻 都是指向相反方向, 圖8的 C字龍牛鼻一邊指向下, 一邊指向上.圖9 上C字龍洞的牛鼻,是一邊指向前, 一邊指向後, 這些牛鼻洞反

圖9. C字龍對穿牛鼻洞


圖9a. C字龍上牛鼻洞前後不同指向

方向指向, 或許有特別的意義. 但這意義現已不可知.對穿牛鼻洞只見於C字龍上, 没有例外,豬龍上的都是對穿圓洞(圖8與10). 這些圓洞的作用都應是掛洞.

圖10 .豬龍獸上對穿圓洞

紅山玉器上的同面斜穿掛洞(圖7)在紅山文化消失後, 也在中國玉器上消失, 中國玉 器上的掛洞只有對穿洞, 這同面斜穿洞一直要到二十世紀, 紅山偽玉大規模出現,才在中國重現. 所以如果在一件說是漢代玉器上, 看到這斜穿洞, 就可以知道,這是一件現代作品. 然而這同面斜穿洞早就在日本根附上出現(圖11). 根附與紅山小件玉器極為相似, 根附只知最先出現在曰本江戶時代, 但源於何人與

圖11. 曰本根附上同面斜穿洞

年月, 無人知曉. 紅山遺圵的被發現是二十世紀初, 日人鳥居龍藏在內蒙越過遼上京, 不用尋便直接找到红山遺圵, 他當時是被邀到內蒙講學,不是考古,而他卻能往荒遠的紅山方向直走, 有如他知道紅山遺圵所在,這都是巧合嗎? 在没有証據下, 只能如是説. 但不能排除的是, 有紅山玉器, 在江戶時期, 便流至日本.

除了對穿與斜穿洞外, 紅山玉器還有一個並不完全穿過的洞(圖12).這洞是用解玉沙

圖12 獸臉後勾雲形器中圓洞

鑽出, 洞壁平滑, 雖洞內滿是化學風化所留下的副產礦物, 但還可看到一些淺而不規則的解玉沙留下的鑽紋(圖13), 現代鑽具留下的痕跡是深而規則,有如螺絲釘所留下的痕跡, 這洞底中間平坦, 而

圖13 圓洞壁與底

周邊比中間低陷, 洞底只有在邊上有明顯的鑽紋. 做成這洞底是因為鑽是中空.有以這些鑽是竹, 但竹的硬度不夠, 獸類的臂與腿長骨應更為合理, 且在石器時代, 骨器便己雜在石器中使用. 中空的鑽加解玉沙只在洞邊往下鑽.洞的中間便成一石蕊, 到底後把石蕊打掉,再把洞底打磨這洞便形成. 這直徑二厘米的洞是在一17.5X15.75厘米大件玉器中, 大件玉器一般没有洞, 這洞是否有特殊意義或用途, 現己不可知.

紅山玉器面上極少有工具留痕, 如能認出現代工具的痕跡, 便能辨出紅山玉器的贗品. 但辨偽最重要的, 還是能認識化學風化留在玉面上的變化.



中國玉器藏家從來都知道古玉上有泌色, 作偽的贗品也是在泌色上著手. 但為什麼古玉上有泌色, 從没有人知道, 也没有人發問, 贗品能成功欺騙, 主要是在泌色上作假, 所以泌色的認識在古玉辨偽上極為重要. 泌色的由來是大自然的化學風化, 要明白化學風化, 首先就要知道什麼是玉. 早在東漢, 許慎”説文解字” 便有”玉, 石之美者”的解釋, 那是說玉是石. 但嚴格來説玉並不是石, 因為石是由多種礦物組成, 而玉是礦物的一種. 礦物簡單來説是大自然有晶體結構的化學合成物, 所以玉是化學合成, 也是晶體. 中國玉器在明代以前都是軟玉, 所以這裏只談軟玉與軟玉的風化. 軟玉是閃石(Amphibole)類的一種, 應注意的是, 這些中文翻譯被稱為石的, 都是礦物而不是石, 軟玉含有透閃石(Tremolite), 與陽起石(Actinolite), 透閃與陽起都是礦物.各地出的軟玉透閃與陽起的比例可以不同, 因而有不同的顏色, 透閃與陽起都是含鈣, 鎂與鐵的矽酸鹽(silicate), 鐵是軟玉顏色的來源, 鐵可給予玉綠, 青, 黃,褐 與黑色, 氧化後的鐵可成銹紅色. 透閃含鎂高,鐵少故白, 陽起含鐵高,所以有綠青黃褐等顏色. 一件軟玉在比例上透閃含量多,顏色便接近羊脂, 但如陽起含量多, 玉便有青綠黃等顏色. 含高量透閃的和田玉便是羊脂白玉, 現今中國的國家規格, 含80%以上透閃的軟玉, 不問出處, 便是和田玉. 鐡也是籽玉皮上紅與黃顏色的來因, 籽玉面上的鐵被氧化, 紅黃顏色便出現(圖14),籽玉皮上的顏色, 也是從化學風化而來,這與古玉面上的風化,有同等的原因與道理, 但為什麼籽玉顏色只在皮上,這些以下再加詳述.

russian nephrite 1
圖14 褐紅皮色籽玉

透閃與陽起的晶體結構極為相似, 晶體都是如纖維狀(圖15). 這些晶體互相纏結成捆狀.

圖15 捆狀纖維晶體

由於捆與捆間容易分開, 但纖維難折斷. 所以軟玉易裂難斷. 也因此玉料常有裂痕, 晶體的結構做成普通顯微鏡下也看不到的微孔與微裂紋(圖16). 玉晶體的結構與風化做成的玉面變化有極大關係.

tremolite sem (2)
圖16 電子顯微鏡下的軟玉晶體



岩石都是由各種不同的礦物所組成, 而岩石也是地球地殼的基礎, 在盤古初開, 地球形成的時期, 包括在海洋下的地殼, 都是岩石所造成, 地殼岩石的出處是高熱高壓的地幔冷卻而成, 這些本在高熱高壓環境下的礦物, 進入了地殼的低熱低壓環境而成不穩定, 礦物便進入化學風化變為在低熱低壓地殻環境下穩定的礦物, 數十億萬年的風化, 中間經過多種礦物的轉變,使岩石最終變成泥土, 泥土是由多種粘土, 沙,有機物品與水組合而成,有了泥土才能有植物, 有了植物才能有動物, 所以可以說, 没有化學風化便没有人類. 以人類的時間算,化學風化是一個極慢的程序, 數萬年乃至數十萬年. 被埋在地下的上古玉器, 因為本身也是礦物, 也會進入風化而使不同的礦物產生. 但由於古玉器被埋的時間短暫, 最長也只有六七千年, 玉器的風化只在面上.
風化可分自然風化與化學風化. 自然風化是大自然的風吹雨打, 霜雪冷熱變化, 自然風化使岩石碎裂成小塊, 碎石再經化學風化變質而變成另種礦物. 水是化學風化最主要成份. 天氣對礦物的風化有極大影響. 溫帶乾旱地區風化比較慢, 熱帶潮濕地區風化比較嚴重. 礦石的轉角, 裂痕與低陷地方, 因受流水的影響最大, 也是風化比較嚴重的地方.水滲進玉面而使玉進入化學風化, 最初的階段是玉面的溶解與離子的流失(dissolution and leeching). 玉含的鈣, 鎂,鐵與矽都會被溶解而跟著水流失, 在比例上矽的溶解 與流失比較少,化學成份的改變引至晶體結構的失去而成為無定形矽酸鹽(amorphous silicate). 無定形矽酸鹽出現在玉面上,一般人以為是鈣化, 但這些肉眼看到以為是白粉的, 在40X顯微鏡下有他的特別型狀(圖17). 無定形矽酸鹽的成因是由於水對玉的溶解,


當玉器在雕刻的過程中, 大量玉屑留在玉面上尤其是在雕線, 鑽洞與低陷間, 這些都是玉件完工後作打磨時有困難達到的地方, 這些地方因此留下大量玉 屑,而這些低陷處也最能聚水, 水把玉屑溶解, 大量無定形矽酸鹽便出現在鑽洞與低陷處,做成了古玉面上的模式(圖18)

圖18玉面上 無定形矽酸鹽

從溶解與流失, 玉面上的矽酸鹽進入化學上的水解與氧化(hydrolysis and oxidation).次礦物(secondary products)因而產生. 不同的礦物會產生不同的次礦物. 輝石類(amphibole) 的軟玉所產生的是粘土類的蒙脱石族(smectite), 與高嶺石(kaolinite), 及氧化鐵類的赤鐵礦(hematite), 與針鐵礦(goethite). 蒙脫與高嶺如無雜質, 是白至灰色. 赤鐵是深紅至褐紅, 但也能是深灰色. 針鐵是黃色, 或紅至深褐色. 但也能是黒色. 這些顏色就是古玉面上的泌色. 次礦物的形成是靠水與礦物的水解與氧化, 所以一定要有水與礦物的接觸, 水能滲入玉面極有限, 一般實驗室所能確定的是100至150 埃( Angstrom). 次礦物的形成是在玉面上微孔與微裂裏, 次礦物慢慢地使玉面的颜色改變, 起初是失去了玉的晶瑩,玉被埋愈久,次礦物形成愈多, 玉的 顏色便變成次礦物的顏色, 要看那種次礦物形成最多, 顏色改變由白至灰白, 黃, 褐紅, 甚而黑,玉的泌色因此形成.玉本身其實並没有改變, 玉件還是軟玉, 改變的只是面上極薄, 薄至肉眼都分不開的面上一層, 由於水的滲進極有限而不能往下滲,溶解與流失在玉面上的持續, 使微孔往旁擴大做成玉面上有如失去一小片皮的薄洞. 微洞有如被堵塞,次礦物便溢出至玉面上, 次礦物在玉面上結晶, 多種晶體的不同結構與顏色, 加上微洞色變, 做成了肉眼所看到的泌色與包漿. 圖20是一宋代的玉蛙,紅褐的泌色是

圖20 宋代玉蛙

微孔內氧化鐵的顏色. 還可看到的是玉面上薄薄的一層其他次礦物. 微孔裏的氧化鐵使玉蛙變為褐紅色, 但從蛙眼的頂部没有泌色的地方, 還可看到這蛙本是一件羊脂白玉. 次礦物在玉面微孔形成而產生玉面色變與籽玉皮成因大致相同(圖14).籽玉在河中玉面上也發生同樣化學風化的變化, 但形成的次礦物大部份被沖走, 没有被沖走的便構成了玉皮的顏色, 圖14的籽玉紅黃顏色是來自氧化鐵, 白色是粘土的層狀矽酸鹽.形成的次礦物都是在皮面上没有深進.没有次礦物在的玉面部份,應保有玉的颜色, 但次礦物還是有在微孔裏而使玉色暗淡微黃, 要把這表層磨掉, 才能看到晶瑩白玉.圖21是一漢代玉獸. 暗黃的泌色是微孔裏蒙脫與高嶺來的色素. 玉獸的眼睛, 耳朵與利牙, 還是保有本

IMHan beast
圖21 漢玉獸

有白玉的玉色. 這件玉獸是件傳世玉, 傳世玉經世代藏家的盤玩, 磨擦與洗刮使玉面上的次礦物被刮除而不存在, 傳世玉因而能看到玉面上化學風化產生的留痕. 圖22是40X顯微鏡下的玉獸玉面局

20Han beast
圖22 玉獸40X局部

部, 肉眼雖看不到, 但在顯微鏡下,右邊的薄層是没有被盤玩刮除而留下的灰白色無定形與層狀矽酸鹽. 最顯眼是褐色的, 由溶解與流失所做成的薄洞. 溶解與流失使微洞口擴大, 洞口繼而相互連接而成如一小片玉皮流失, 形狀不規則的薄洞. 化學反應做成洞底的質子化層(protonation layer) .含鐵的質子化層常是黒與褐色.因為是從化學反應而來, 質子化層就是用超音波也不能徐去. 圖中有兩條紅箭頭指向的白線, 這兩條白線在顯微鏡的燈光下, 是銀白金屬反光的線, 這些金屬反光直線常可在古玉面上看到, 因為反光的角度不是九十度, 要看到這些金屬線,要把玉件拿在手裏放進顯微鏡的焦點, 然後把玉件上下傾斜轉移, 從多種角度斜看玉面. 其實斜看玉面才可看到次礦物的厚度與次礦物不同的晶體結構, 圖22右邊有如塊狀的次礦物晶體,是一般在顯微鏡下所應見. 金屬反光線是因次礦物含鐵, 一般的線是銀白色, 但金黃色的反光線偶而有見. 反光的金屬也不一定是直線. 在圖23的紅山獸人上,可看到這樣的局部放大的玉面(圖24), 無定形與層狀矽酸鹽晶體構成在玉面上, 紅

圖23 紅山獸人


圖24, 紅山獸人次礦物
圖25 紅山獸騎虫
圖26. 獸騎虫上金屬次礦物

色圈內是金黃色的反光金屬體附在層狀矽酸鹽的邊上, 層狀矽酸鹽(phyllosilicate) 是屬於粘土的蒙脫與高嶺的晶體結構. 這些晶體是片狀的層疊, 斜看玉面才能看到這些不同厚度如塊狀的晶體與微隆的邊如圖24. 雜在次礦物中, 常見一至數粒銀白反光金屬(圖25,26).

古玉的泌色與玉面上本有的晶瑩與色澤的失去與改變, 可以說全是化學風化產生的次礦物所做成.玉面的變化是來自次礦物的晶體結構. 微小的晶體只以肉眼觀看能做成誤導, 玉面上的晶體要以40X的體視微鏡才能淸楚地觀察. 一般以為玉面上的凹凸不平, 是玉面上的破損, 做偽便以高壓噴沙來仿傚. 但玉面並不是如噴沙所做成的破損, 而是如漢玉獸面上失去一小片皮(圖21與22). 要看到玉面只能把面上的次礦物去除. 但紅山玉器要至二十世紀初才出現, 紅山玉器没有傳世玉, 再加上紅山玉器是中國被埋最長時間的玉器, 紅山玉器面上滿佈風化產生的次礦物. 這些結成晶體的礦物就是做成玉面上凹凸不平, 看似破損的原因. 圖8的豬龍C字龍面上看似滿是殘破, 但在顯微鏡下原因便清楚現出(圖27). 作為次礦物屬於粘土的蒙脫與高嶺及氧化鐵的赤鐵與針鐵在微孔

圖27豬龍 C字龍面上晶體結構1

中產生,當在產生時這些次礦物混合成有如含鐡的糊(ferruginous). 次礦物溢出至玉面上要過一二千年才能結晶成晶體. 這個從溶解與流失至晶體成結構的時間極長, 所以由晶體結構做成的泌色只能在宋以前的玉器上看到. 玉被埋愈久, 這些晶體也愈多, 因此紅山玉器面上, 都有極深刻的變化. 粘土的蒙脫與高嶺晶體是層狀, 重疊的晶體在顯微鏡下成塊狀. 但在同一玉件上, 不同的部位會有不同的晶體結構與不同的厚度, 圖27左邊與右邊的晶體,厚薄與形狀便有不同. 圖28是豬龍C字龍上

圖28 豬龍C字龍晶體結構2

的另一部位. 與圖27的晶體比, 圖28雜有細長纖維狀的晶體. 而這些不同的晶體,都是在同一件玉器上. 晶體不一樣是 因為蒙脫是個總稱,蒙脫包有二十多種的粘土, 而高嶺也有數種, 他們的晶體雖然都是層狀矽酸鹽, 但不同的粘土能有不完全相同的晶體結構, 再加上粘土能雜上氧化鐵, 所以一件玉器上不同的部位, 能有不同的晶體結構,型狀,厚度與顏色,也就是肉眼所看到古玉的凹凸不平, 有如殘破的原因. 偽紅山玉面上全是一個式樣, 認清玉面上複雜的變化, 是極佳的辨偽工具.

玉面上風化的厚度, 就是說面上產生的晶體加上微孔內的泌色, 只是玉面上0.1至0.2毫米. 就是把玉件切片, 只是以肉眼看也容易被忽略. 變化只發生在如此薄的面上, 但就能使古玉觀賞者 以為是整件玉器的改變. 古玉有一般人以為是墳墓氣息的特殊氣味, 這是由於粘土類的蒙脫與高嶺在玉面上的產生.礦物有氣味的不多, 但粘土是有氣味的礦物之一. 粘土就是給予泥土的特有氣味, 風化使粘土在玉面上產生, 產生在玉面上的粘土氣味, 就是古玉上一般人以為是墳墓氣息的特有氣味的來因. 在時間上,次礦物的粘土要有二千年才能有足夠的產生發出氣味, 一般只在漢以前的古玉, 才能有這種特殊氣息.

在化學地質上, 大自然的礦物可產生不同的變化, 而這種變化, 也可產生在玉面上的次礦物上, 圖27豬龍C字龍玉面上形成的次礦物, 在右邊有兩塊比較厚的矽酸鹽(圖29). 與層狀矽酸


鹽不同,這些晶體有如軟玉的梱狀纖維晶體(圖15,16). 但這些晶體是在玉面上, 故不可能是軟玉晶體. 這是假象(pseudomorph拉丁文的意義是假體) 的形成, 假象形成是一種礦物變成另一種礦物但保有本來的晶體結構.( 詳細解釋可看這網站上拙作Chemical Weathering). 假象可在玉面上長成粒狀如圖30紅山獸人上所見. 假象在化學質上不是軟玉, 也不是次礦物. 而是其他礦物. 假象的形

圖30 紅山獸人玉面假象

成都是多粒, 多粒的假象可以在全件玉器上如圖30與圖7. 但也可只見在玉件的低陷聚水處. 圖31的

圖31 紅山獸人臂彎下假象

假象是在這篇首的紅山獸人的臂彎下. 在玉面上如能看到假象的形成, 便可知這是一件曾經風化的真古玉.

在古玉上有些部位有如能看到玉的本來色澤, 偽古玉以一片深色的顏料漆在面上間以没有漆的玉面以模倣真古玉, 但由於微孔内都是次礦物, 就是看到玉面, 也不能是玉的本有颜色.圖32 是圖8的豬龍C字龍玉面局部, 夾在層狀矽酸鹽與氧化鐵間是一片如淡青色的玉面, 但小心看便可見,

圖32 豬龍C字龍上半透明矽酸鹽

這並不是玉面, 而是一塊半透明的矽酸鹽薄片.圍繞著這薄片是微隆的邊. 兩紅箭頭間是一條銀白的金屬線. 這些半透明薄片常可看到在古玉面上, 圖33是圖10的紅山豬龍獸玉面上的另一局部. 這薄片塊是從矽酸鹽與氧化鐵合成而來, 故在薄片裏常 見有黑與褐色斑點, 這些斑點並不是一般以為的

圖33 豬獸上半透明薄片

炭點, 而是氧化鐵的inclusions,中文翻譯應是包括物. 氧化鐵inclusions 是包在半透明矽酸鹽片內. 層狀矽酸鹽晶體, 還可見在晶片上. 由於玉面上的變化是從矽酸鹽與氧化鐵從微孔中溢出至玉面上結成晶體後的成因, 所以許多以為在玉裏的現象, 其實是在玉面上. 圖34的漢玉獸環看似整件變了


褐紅色, 但這泌色是來自玉面上厚薄不同的赤鐵礦物蓋在玉面上而來(圖35). 圖36是一紅山 虫獸,

圖35 玉面上赤鐵礦

同樣的這虫獸有如變成了紅褐色, 但在顯微鏡下, 可看到這泌色是從玉面上不同的次礦物形成而來

圖36 紅山虫獸

(圖37). 泌色是由兩種以上氧化鐵與粘土所構成, 不同的晶體做成玉面上不同的颜色與厚度(圖38).

圖37 虫獸面上不同晶體結構1
圖38 虫獸上不同晶體結構2

這些晶體一層疊在另一層上有如虫獸上的殼. 虫獸的不同部位, 有不同的晶體與結構(圖37), 這些複雜變化, 只能在顯微鏡下看到. 也不是贗品所能偽造到. 許多看似在玉面上如 圖38的裂痕, 其實是在次礦物晶體薄片上, 而不是在玉件裏.

紅山玉器因為是埋藏最久, 玉面上的晶體結構也最複雜, 玉面上的顏色變化最多, 圖39是一紅山玉鷹, 玉鷹的前面(圖40), 與後面(圖41) 晶體與顏色全然不同.在紅山玉器上, 因為 年代

圖39 紅山玉鷹


圖40,41. 玉鷹前與後

久遠, 常可看到其他古玉看不到的泌色. 圖42紅山鳥人上 赤鐵Hematite 晶體(42a) 的形成, 在中國古玉,只能見於紅山玉器上.

圖42 紅山鳥人
圖42a 鳥人面上赤鐵晶體

圖43紅山虫鳥面上有明顯的多種不同的次礦物, 但特別的次礦物是在鑽洞裏(44). 針鐵晶體在鑽洞

圖43 紅山虫鳥

形成. 針鐵晶體在鑽洞中形成只能見於紅山玉器上.就是在紅山玉器上也並不常見, 這鑽洞針鐵晶體

Hongshan bird 109-1 and 2needle hematite crystal 1
圖44 虫鳥鑽洞針鐵晶體

只有在另一紅山玉器上見到. 圖45是一紅山獸虫與 獸虫鑽洞內針鐵晶體(圖46).

圖 45 紅山獸虫
圖46 獸虫鑽洞內針鐵晶體

如果把軟玉加熱, 軟玉的顏色便變灰然後白, 熱度使軟玉的礦物發生變化成為一硬度比較低的礦物, 軟玉不再是軟玉, 用這種燒過的玉料做成玉器, 便是一般所説的雞骨白. 中國玉器只有浚家灘玉器可說全是雞骨白(圖47). 良渚玉器只有部份是雞骨白, 淩家灘與部份良渚玉器, 都是用

圖47 凌家灘雞骨白玉龍頭

燒過的玉料雕成.雞骨白不是從風化而來, 如果不是把玉料加熱後再雕, 不管把玉埋在土裏多久, 都不會變成雞骨白,軟玉風化不能產生雞骨白礦物, 如果有玉器不是淩家灘或良渚, 而説是紅山或商, 周, 漢雞骨白, 就應知道這是現代膺品.




Elizabeth Childs – Johnson 所寫的文章 “Jades of the Hongshan culture : the dragon and the fertility cult worship” 詳細報導了所有發掘來的出土紅山玉器. 可惜的是這些玉器極為有限, 大件的有C字龍, 豬龍, 勾雲形器, 小件的有豬龍, 龜, 鳥, 方及圓珠飾物. 但只是這些並不能完全代表紅山玉器及文化. 紅山玉器製作精美, 藝術成份高. 以一個新石器時代文化,, 在風格上雖有異, 但在藝術上可説能直追商周. 紅山玉器以3至8厘米的小件為多, 小件大部份有掛洞, 應是掛在身上的掛件. 大件的有見至18厘米, 勾雲形器可至28厘米(圖48), 除了這勾雲形器外, 過15厘米的大件玉

圖48 勾雲形器

器, 如篇首的獸人, 與圖37的虫獸都没有掛洞,應是擺件. 勾雲形器頂上中間有一掛洞, 可以繩繫在脖上, 兩邊還各有一細長的洞, 以繩穿過這兩洞, 可把勾雲形器繫在胸前. 勾雲形器應為族中首領或宗教領袖所佩戴. 勾雲形器頂上的掛洞是對穿牛鼻洞, 一般對穿洞是個圓洞,在鑽洞技術上來說這牛鼻部份並不需要, 對穿牛鼻洞只見於C字龍與勾雲形器上, 這牛鼻洞是否含有宗教意義, 那就只能作猜測而不可確知. 但如在C字龍或勾雲形器上, 没有看到這對穿, 但不同指向的牛鼻, 那這件玉器的真偽, 就值得懷疑.

紅山玉器最為人知曉的應是豬龍與C字龍. 一般都以為這是中國龍的所始.C字龍比較少見(圖8,9). 豬龍卻常見與獸組合. 圖8豬龍在C字龍背上. 圖10豬龍在獸上, 圖49是豬龍在獸上面對

圖49 豬龍與獸面向同方向

同一方向, 圖50是獸在豬龍上,面向相反方向. 在紅山文化玉器,前後相反方向是常見, 這與牛鼻洞的

圖50 豬龍與獸面向相反

相反指向, 應有同等的意義, 這點往下再說. 圖51的豬龍加了一雙人腿使成半人. 圖52是豬龍與一有

圖51 有腿豬龍

翅的獸合成, 與其他的豬龍獸合成有不同, 圖52的豬龍有如在變, 豬龍的頭部已不是豬龍而成為有

圖52 豬龍與有翅獸

翅的獸, 除了圖8的豬龍在C字龍的背上外, 所有與豬龍合成的都是與獸, 且變化不同,豬龍與獸或許有一特别關連.

紅山玉器如果不是全部, 應可說大部份含有宗教信仰的思想. 在紅山遺址中發掘 出的彩陶無底圓筒(圖1) 被發現並排放在大型墓室周圍, 且因是無底不可能是有用的器皿, 學者以為這圓筒含宗教意義 . 這無底圓筒也可見於紅山玉器上.圖53的無底圓筒上是一只龜, 圖54的鳥人腳上

圖53 龜爬無底圓筒

圖54 鳥人腳上無底圓筒

放的是個無底圓筒, 從這兩玉件来看,無底圓筒應與動物與人有關, 但真正的宗教意義不能確知. 圖55的鳥頭頂著個瓶, 不可知的是這看來是個現代花瓶是否也是無底圓筒的一種.然而這像花瓶的玉

圖55 鳥頂瓶

瓶不單只見在這玉鳥頭上, 圖56是一個形式大致相同的商代玉瓶, 由於瓶上雕的鳥與獸也見在青銅

圖56 商代玉瓶

器上, 此瓶應是祭祀 用的禮器而不是花瓶, 但青銅器裏並没有這花瓶樣形式, 那極有可能這商代玉瓶是承自紅山. 也是説這鳥頂的瓶與這商代的瓶, 在宗教上有同等的用途與意義.

紅山遺址發現的女神廟及出土泥塑孕婦像, 皆指出紅山宗教包有女性與生殖崇拜. 彩陶無底圓筒也見於玉器上, 毫無疑問紅山玉器是紅山宗教的結晶, 玉器雕刻出紅山宗教的思想, 而女性也肯定地反影在玉器上. 在古玉中紅山是唯一的玉器把女性身段描述,雕出隆起的胸部. 圖57的鳥

130-1 - Copy
圖57 女鳥人

人頭部雖是只鳥, 但身段是明顯的女性. 圖58的獸人隆起的胸部, 肯定了她的性别, 她頭上有兩半弧

圖58 女獸人

形如角狀物體一直延伸至胸, 雖説這可能是獸角, 但也有可能是紅山時代女性髮型. 圖59是另一女

圖59 女獸人

獸人. 除了頭上雙耳, 她的樣貌較椄近人. 紅山的 雕刻,女性眼睛都是圓型, 另一種眼睛是杏型見於男性, 圓眼也見於大部份的鳥與虫, 而杏眼見於大部份獸與獸人, 紅山遺址還出土了泥塑孕婦(圖2), 可惜這些孕婦都只有身而没有頭, 從玉器上看這些泥塑孕婦的頭也有可能是鳥或獸. 圖60是一大肚


圖60 紅山孕獸

子懷孕的獸. 獸人雙手前扶與圖57女鳥人相同, 手的掩蓋不能確定懷孕獸人是否有如女鳥人的隆胸.注意這孕獸的眼是以線條描出,左右兩眼以一梁相連, 紅山玉器的眼一般是把眼旁磨低使眼浮宊出,而這種以線條描繪且左右相連 的眼只見於在豬龍上. 所以這獸的頭是豬龍, 而頭上是C字龍的冠.在這篇我們己看到豬龍是與其他獸合成最多, 且也能變化,, 圖60溶合了豬龍,C字龍與有孕的人獸. 懷孕是生, 玉器埋在墓葬是死,這種人, 鳥, 虫, 獸相互生死交替, 難保不就是紅山的宗教思想.. 圖61是

圖61 獸人

一杏眼的獸人, 一般杏眼是男性. 圖61的獸人並不例外. 注意獸人頭上的角能與圖58女獸人的角相比. 不排除的這是紅山男性髮型. 獸人在男女上還有一個分别, 男獸人大多是蹲著, 女獸人大多是跪坐. 泥塑的孕婦都是站著, 圖60的孕獸是女或是男值得思考.

在豬龍與獸的合件, 豬龍與獸可各對同一或相反方向(圖49,50). 這種同與反方向還可見於獸與鳥的合件. 圖62a,b 的合件, 獸與鳥面向前後不同方向. 圖63a,b 的合件, 獸與鳥面同向前.


圖62a 獸鳥合件前


圖62a 獸鳥合件後
圖63a 獸鳥合件前


圖63b 獸鳥合件後

紅山把人, 獸, 鳥與虫相互混合,62與63的獸鳥或可解釋為鳥的離開與進入獸人. 但前後相反與同向的觀念, 在紅山玉器上是明確的. 圖64的鳥站在獸人頭上向前看. 這鳥獸合件本是一對, 可惜在我收

圖64 鳥站獸人

藏中只有一件, 另一件的鳥站在獸人頭上是向後看.

紅山玉器最為人知曉的是豬龍與C字龍, 且因簡單易彷, 在偽玉市場上豬龍與C字龍也是最多見. 然而在真紅山玉器上, 豬龍有見與獸合成,C字龍並不常見. 紅山玉器最多的是獸人與鳥或虫的合成. 紅山的雕刻可説是多采多姿, 每件玉器有他的特點, 深深表達出紅山藝人的創造性與個别的思想與藝術. 圖65a,b 是獸人與兩只虫在頭上的合成. 獸也見坐在虫上(圖25). 圖66a,b 的獸人

圖65a 獸人與雙虫合成


圖65b 獸人與雙虫合成
11e (2)
圖66a 獸人頭頂小獸人
11f (2)
圖66b 獸人頭頂小獸人


上頂著的是一小獸人. 圖67a,b 獸人頭上鳥. 圖68a,b 雙獸在獸人頭上. 值得注意的是獸鳥虫不只


圖67a 獸人頭上鳥
圖67b 獸人頭上鳥

有獸鳥虫的特徵, 而是 一個混成, 圖65的雙虫有鳥翅, 圖67的鳥前面看像只獸, 圖66的小獸人臉可


圖68a 獸人頭上雙獸
24c (2)
圖68b 獸人頭上雙獸


與圖67的鳥臉相比, 圖68雙獸可與圖65的雙虫相比. 這種人獸鳥虫的相互混合變化, 有可能是紅山人民對生命的看法, 表現在玉器雕刻上.

一般以為紅山是個六千年前的史前文化, 在技術與藝術上都應落後, 因而市面上紅山偽玉器都是簡而陋. 其實紅山雕玉藝人有極高的技術與藝術思想, 直可比美現代藝人. 圖69a,b,c是一獸蟬合成, 玉件前後是獸與蟬, 底部是蟬的臉. 這玉件的雕刻,充份表現出紅山藝人的創意與獨宊


4b (2)
圖69a 獸蟬合件獸臉
4a (3)
圖69b 獸蟬合件背蟬
4c (2)
圖69c 獸蟬合件底蟬臉

風格, 與後期中國玉器相比, 不見遜色. 這種三面雕的手法也只見於紅山. 圖70a,b,c 是兩人臉, 背後是一蛙, 人臉是上下相反方向, 這别具風格的三面雕, 成功地把兩人與蛙合成. 把70a的人臉與69c的

圖70abc 三面雕正反人臉與背面蛙

141-1141-3 (2)

圖70abc 三面雕正反人臉與背面蛙



紅山玉器上的人大多是獸頭人身. 圖71a,b 是人首上伏一虫. 虫的翅在人耳後兩旁下伸.


圖71a 人首上伏虫
6d (3)
圖71b 人首上伏虫

圖72a,b是人臉下有兩腳, 頭上也是伏一虫. 與71a,b的虫相比,72a,b的虫如有一鳥頭. 紅山的獸極少


圖72b 人臉與虫
圖72b 人臉與虫

有人臉. 圖73a,b,c是 一獸, 獸頭的後面是一張人臉, 但從側面看, 這人臉應是個面具. 這獸背後人臉


圖73a 獸與人臉面具
圖73b 獸與人臉面具
圖73c 獸與人臉面具

面具在紅山後, 在中國玉器上完全消失, 但在19世紀卻出現在曰本根附上(圖74a,b). 這也是巧合嗎?難説.



圖74ab. 曰本根附



獸在紅山玉器上是常見的雕刻, 但獸在紅山文化消失後. 還見於中國文物上.獸臉出現在商代青銅器上. 圖75是圖54 玉瓶上的獸臉. 商代的獸臉是否源自紅山是没法考據. 圖76 是圖64 鳥

305-1 (3)

站獸人的獸臉. 圖77是圖12勾雲形器前面的獸臉. 這獸臉與勾雲形器是一合件, 所以應有極 大的宗

30a (2)
圖76 鳥站獸人獸臉

教意義. 這三獸臉的相同處實不可忽視. 但如果商代的獸真的是來自紅山, 那這獸臉為何如此重要

圖77 勾雲形器合件上獸臉

下傳至商代的祭禮? 圖78是一良渚蝴蝶形器, 這蝴蝶形器下面的像是一獸臉. 良渚玉器從來没有獸

Liangzhu plaque)
圖78 良渚蝶形器獸臉

或獸臉的雕刻, 這蝴蝶形器是唯一刻有獸臉. 圖79是另一良渚蝴蝶形器, 這蝴蝶形器上刻兩良渚神

圖79 良渚蝴蝶形器神獸

獸, 上面没鼻的是良渚人皇標誌, 下面有鼻的是皇祖標誌.( 參看本網站拙作”良渚神人神獸的意義, 及其宗教中心思想”). 圖78上的獸臉所佔是皇祖的位置, 這也告訴了我們獸是皇祖, 所以獸臉被刻在商代祭皇祖的青銅器上是極有原因.

臉在周代還可見於銅器上.圖80是一周代獸臉玉璧. 璧上紋飾雖已簡化,但没有疑問還可知是獸臉.

2019-06-29 16.13.23 (2)
圖80 獸臉壁

至漢代可見. 圖81a,b是一漢代玉印. 印鈕是一獸, 四面各雕有一獸臉. 印面雕的是”黃漢起

2019-06-29 16.06.29 (2)
圖81a 漢黃蓋印


2019-06-29 16.07.49 (2)
圖81a 漢黃蓋印

印”四字. 這是蜀漢黃蓋的印章, 獸臉也許是蜀漢皇室的標誌. 紅山獸及獸臉, 與良渚皇祖靈之所寄的鳥,自漢後在中國歷史上消失不復見. 也許是這種中國上古信仰, 在唐代被外來彿教的宗教信仰代替淘汰了的原因.





何炳聯寫於 2010. 重寫2017.



位於長江下游太湖流域地區的良渚文化 (3300 BC-2200 BC),在中國歷史上消先了四千多年,直到1936年才重新被發現.從七十到八十年代後,大批良渚遺址在福泉山,反山,瑤山,匯觀山等地被發現.良渚的堆土高台祭壇,重新被國人認識.良渚遺留下大批精美的玉器,也留給了我們許多難以解釋的謎.一個在新石器時代,在農耕技術,蠶絲紡織,玉器雕刻, 與最近發現的水利工程等,都比同時期文化進步的社會,存在了一千多年,而在一個極短的時間內,消失無蹤.在中國歷史上雖無記載,但在商周文物上,卻可看到良渚留下的影響.同以難解釋的是,在許多良渚遺留下的玉器上,刻有一神獸(圖一,二),


202-2 (2)



良渚神獸應被區分為有二(圖一), 在這三叉型器上, 這兩像是明顯的分開,上面的像是一雙重圈眼,下加一橫攩.琮對角上所刻,無例外地必是此像,或是此像的簡化.而刻在神人身上,必是三叉型器下面的另一像,一雙重圈眼,再加鼻與橫欓的神獸.兩像相差可說只有一個鼻.雖則兩神獸像都有單獨見刻於




獸實是一張人臉面的刻寫,人臉無皮下脂肪,把皮拉下後,便可見到臉上肌肉(圖三).環眼的肌肉名為Orbicularis Oculi, Orbicularis 中文翻譯是如軌道的圈,Ociuli 是眼睛,此肌肉的紋路,就是環眼的

facial muscle a (2)

重圈,極薄的直紋肌肉,與眼上的神經與眼旁的筋,都可給良渚人三組直線的印象( 圖四).神獸像上其

eye muscle (2)



組合成肌肉(圖五), 所以從正面看肌肉是細長的直線(圖六),而肌肉的橫切面,就是一團一團的捲紋

muscle 1 (2)
muscle cross section 3








img055 (2)

神人是一被雕在一些玉璜與玉琮上的像(圖十),此像頭戴羽冠, 有以這羽冠中間突起的是鳥喙,羽冠下是一張倒梯形臉.神人全身滿雕著肌肉紋,而神人臉的最突出點是只有這臉沒有肌肉紋.臉上雙眼圓瞪,鼻子空洞,嘴露牙齒.如把人臉上的皮拉下,再把肌肉割除,看到的應便是此臉面, 神人臉為一無皮肉的人臉面,在古代禮祭的儀式,把人的皮肉拿掉是有此可能.,<說文.示部>的字,都與禮祭有關.從這些字,可看到古代禮祭的儀式及意義,禍這個字,<說文,示部>:”禍,害也,神不福也,從示,骨聲.”但在甲骨文禍並不從示,禍是咼字,<說文.咼部>:”咼,剔人肉置其骨也.”所以把人肉剔至骨,是古禮祭的一個儀式,神人的臉可以代表死亡,神人胸腹為一帶鼻神獸像.再往下看,在神獸嘴部橫欓下,有六個尖銳物體,一般看法,此為神獸嘴的利牙,但也有以為是鳥爪.這有鼻的神獸像,也常見被單獨刻在一件玉器上,當他單獨出現,不與神人在一起時,從沒看到有牙齒.也就是說神獸並没有利牙,看到這六個尖銳物體時,一定有神人雙腳在,而且沿著雙腳線條的伸延,不難可看到,這些是連在腳上的鳥爪.在良渚文化裏,三是常見的數目.且都是與禮祭或神人神獸有關,如三叉形器,重圈內有三組直紋,祭壇是三層方台疊成,與這裏每只腳上有三只鳥爪等,都是成三.神人是鳥也是人,臉部含有死亡的意義.神人是誰?要知道,首先要認識幾個良渚與大汶口的早期字符號.大汶口的早期字符號與良渚字符號有許多相同, 首先要看的是大汶口的皇字(圖十一),大汶口皇字李學勤先生以為字的上半,有羽冠的意義, 而下半

img054 (5)

是一倒梯型的框, 神人頭戴羽冠(圖十),冠下是一倒梯型的臉,神人的頭就是一個皇字, 也就是說神人是皇. 但神人羽冠代表鳥, 腳是鳥爪, 中國上古神話有許多皇與日與鳥的相互關連,<山海經.大荒南經>,”羲和者,帝俊之妻,生十日”.帝俊兒子應為皇.十皇為十日.而日中有鳥,<山海經.大荒東經>,”湯谷上有扶木,一日方至,一日方出,皆載於鳥”.而后羿射日這故事,把這皇與日與鳥的關系,表現無為.<楚辭.天問>王逸注云:”堯命羿仰射十日,中其九日,日中九鳥皆死,墮其羽翼”. 皇是日,但墮回地上的是鳥. 鳥應是皇的媒介,日中的鳥也是皇的代表. 除了神人神獸, 鳥也常被刻在良渚玉器上, 這鳥站的長框, 可見在一些良渚玉壁上(圖十二). 長框在甲骨文上的意義是土(圖十三). 李學勤先生以為這長框

img054 (3)                                                                           圖十二


甲骨文土 (3)

有一平坦祭壇,壇上有一靈鳥.一般良渚祭壇都是由三層方台建成,框的上半兩邊也是三級,無疑這鳥站長框所代表的就是良渚的堆土祭壇. 堆土祭壇上葬的是皇, 框內是只代表皇的鳥, 也是說皇被葬在壇內,壇上的鳥,是代表皇的媒介.死後的皇的靈,便附成在鳥而站在壇上.皇死後的靈附在鳥上,但這靈的出處應是從皇的肌肉.甲骨文的祭字(圖十四),說文解釋,”祭,祭祀也,從示,以手持肉”,甲骨文祭字


祭字 (3)

左邊是肉, 右邊是手, 肉舆手間是下滴的血. 有以有血下滴的生肉是為祭品,奉獻給神祖為食物.但這說法有所不妥,因鼎為煮肉及放已煮熟肉的器皿,(玉篇.鼎)”鼎’器也.所以熟食者”,而鼎也是用以祭祀的重要禮器,所以祭祀用的肉應是煮熟的肉.而不是有血下滴的生肉,以手持有血下滴的生肉,奉獻給神祖為食物的說法, 並不成理.説文上說祭字從示,”示”的意義是神也是祖,所以祭祀的對象是神祖.但甲骨文祭字並没有從示, 示要到金文才在祭字上出現.那就是說以手持有血下滴的肉,已包含了示的意義. 而這有血下滴的肉,應就是神與祖的代表. 肌肉是神祖所在.肌肉紋刻在神人身上, 是說神人不單是皇且是神祖.

代表良渚堆土祭壇的鳥站長框並不只一個, 在另一玉璧上刻有這一式樣(圖十五). 與圖十二不同是框內並不是代表皇的鳥, 而是一個大汶口與良渚的靈字(圖十六). 這靈字是由一日及一月所組成.而


img054 (4)


img053 (2)

框內靈字日的部份飾以捲紋(圖十七),良渚的捲紋是肌肉的橫切面. 整個意義是皇靈在日, 站在祭壇

img053 (4)

上(框上) 的鳥, 把皇祖的靈, 載至日中, <山海經.大荒東經>,”湯谷上有扶木,一日方至,一日方出,皆載於鳥” , 便有了意義.

總括來說,神人的臉面代表已死去的皇.皇的靈成為神祖,有鼻的獸面為神祖的臉面,也成了皇祖的特徵與代表,神人的靈或轉化為鳥, 或被鳥載至日中.鳥是皇神靈所在.雖則皇祖的靈與肌肉的關係的思想,在中華文化裏消失,但皇為神祖而成為被拜祭的對象, 與祖宗崇拜,也就是說夏商周文化及後世的拜祭祖先應始於良渚.


神獸像有二,刻在神人身上的有鼻臉像,應為神祖的標誌,此像也見單獨刻於用以祭禮的三叉形器或半圓形器上,(圖十八,杭州歷史文化研究所藏).應為被拜祭的對象.而在玉琮(圖十九)對角, 與玉銊(圖

IMG_3486 (2)

二十) 所刻,均為無鼻的神獸像,玉琮代表皇權, 玉銊代表軍權,這像應是皇權擁有人的代表,也就是人







從神人神獸, 可看到良渚的信仰是皇祖崇拜. 祖宗崇拜在中國,一直延至今,殷商的宗教思想與良渚宗教思想有極大的相同.”商代信仰主要有上帝,天地間自然神祗和祖先神三大信仰系統.”(宋鎮豪: <夏商社會生活史>,第459頁),禮祭是向各直系或旁系先王,甚而先妣先母等祖先祈福求祐.在其自然崇拜中,包括了天地日月,山川河岳等諸神.但上帝在商人中,是最至高無上,”商代宗教信仰的最大特點就是對上帝的崇拜,對祖先的崇拜和祭祀.”(史仲文,胡曉林:中國古代歷史文化的品性與特色.<中國全史>)但上帝其實也是皇祖,先王死後升天而成帝,”人王死後也可以稱帝.從武乙到帝乙,殷王對於死了的生父都以帝稱.”(胡厚宣:殷墟卜辭中的上帝和王帝,<歷史研究>1959年,第10期),所以可以說商代的宗教主要是皇祖的拜祭.良渚神人為良渚社會的神祖,也是被拜祭的對像.就這點已可看到這兩宗教文化有極大相同. 再有良渚的堆土祭壇與夏商周社壇有許多相同,文獻記載中的有關夏商周三代的社壇,都可在良渚文化祭壇找到印証.江林昌先生引述了陳剩勇先生在(中國第一王朝的崛起)所提出的六點,封土為社,社壇成方形,社壇用多種顏色泥土堆築,社壇為露天,社壇築在高地,社周圍有大樹等.結論是”中原夏商周社壇正是淵源于良渚文化祭壇.”(中國上古文明考論 321-322頁).祭壇的相同,意味著禮祭儀式的相同. 再看 大汶口靈山這字(圖二十二), 這靈字是由日月與山所組成,日月是

img054 (2)

天山是地, 這是說靈在天地間, 這與商代的天地間自然神祇的信仰,有著明顯的相同,實不可忽視.

良渚的宗教思相,不單在祖宗崇拜上與夏商周宗教有極大相同,且許多夏商周的信仰,可以追至良渚文化上. 中國上古神話的皇與日與鳥的相互關連,可在良渚文化中看到影子, 圖二十二的靈字是指皇之靈,也是光芒四射的太陽,下為山,也可作為土字.江林昌先生說”帝字皇字,都具光明之義,有明顯的太陽神特點.”(中國上古文明考論,395頁),皇字有太陽的意義從何而來?良渚靈字日的部份刻有肌肉紋, 是皇祖的靈所在. 皇祖與日關連的思想,在良渚時期己存在. 鳥是皇祖的靈與日的媒介. 鳥把皇靈帶至日, 所以中國上古的鳥與日, 如金沙四鳥環日(圖二十三), 與河姆渡的雙鳥拱陽, 都應有皇祖的意義在內.

金沙 (2)


鳥在皇祖崇拜中佔有極重要的地位.商代禮祭拜祖用的玉器(圖二十四) 與銅器,都刻有烏的形像.


人更自以是玄鳥的後代.《詩經·商頌·玄鳥》”天命玄鳥,降而生商.” 商人的禮祭是皇祖的崇拜,而鳥是皇祖神靈所在,從這不難看出,為何商人自以為玄鳥所生.商代的玉印(圖二十五)上所刻的商字,便是一鳥.

IMG_1809 (2)


時至東周春秋時期, 鳥篆(圖二十六)出現在吳越楚等南方地區, 鳥篆是書法的一種, 字的筆劃, 是以

IMG_2235 (2)

鳥形成,而吳越所在, 是長江出口良渚地區. 出土的越王勾踐劍上所刻的十六字, 便是以鳥篆書寫, 勾踐劍是越王的倍葬物, 用鳥篆書寫應是說鳥篆是皇祖的語言文字, 這鳥能與皇祖互通的觀念的源頭,應是良渚. 良渚思想遺留至周代吳越地區,可從以下兩玉環上看到. 圖二十七的玉環前後各刻有四個鳥


篆, 玉環極厚, 邊上也刻了四個鳥篆, 這環應是周代吳越地區的玉器. 另一玉環有同一模式與厚度, 應也是周代吳越地區的玉器(圖二十八), 此玉環前後素面, 但在邊上卻刻有三個形象. 這三個臉象雖


與良渚神獸有異, 但也不難看出, 這是良渚的有鼻神獸, 皇祖的標誌, 越王勾踐劍上的鳥篆是四字一句共四句十六字,刻有鳥篆的玉環上都是四個字, 而這臉面是三個, 在良渚文化上, 與皇祖有關的數目都是三, 進一步說明, 這環上臉面, 是良渚皇祖, 也証明了良渚的宗教思想, 至周代還留在吳越地區.

含有宗教意義的鳥, 至漢代還見刻在玉壁上(圖二十九).西漢南越王墓內的玉壁, 與圖三十的玉壁上,

IMG_1909 (2)

都刻有鳥頭的人物. 鳥至唐代在玉器上消失, 偶而有見也只是裝飾, 失去了宗教的意義. 唐代外地宗


教由西方傳入, 尤其是佛教, 代去了中華本有的宗教思想, 良渚思想也不能例外, 彿教成了中國的主流宗教思想, 雖則彿教並沒有祖宗崇拜的成份, 而祖宗崇拜還是在中國廣大流傳 以至現今社會. 可見良渚時期的思想, 還是深在中華文化裏.




Henry Gray:<Anatomy of the Human Body>,Philadelphia:Lea and Febiger 1918

良渚文化博物館,香港中文大學文物館,<東方文明之光 良渚文化玉器>,1998










Mesoamerican Jadeite – The Tlazolteotl

Fig. 1
Fig.1. Jadeite Tlazoteotl


Ten years ago, as a tourist in a remote Central America tourist destination (not Mexico), I saw a street peddler, selling stone made tourist items. Behind all his poorly made uninteresting items was a single green stone statue that stood out as unique. With no knowledge of the South American culture, the first thing that came to my mind was Chinese fake jades coming to Central America. Curiosity drove me to picked up the statue and looked at it carefully. The statue was a handmade jadeite. Part of it was done by chipping and flicking, a technique not used by Chinese jade carvers ancient or recent. This could not be Chinese made. As it fitted into my category of souvenir with a local flavor I decided to buy it. After a short hackle, the man agreed to sell the statue for 75 US dollars. Later research showed that a similar statue was in the Dumbarton Oaks collection, the Aztec goddess Tlazolteotl carved between the late 15th and early 16th century. Tlazolteotl was a goddess of filth and vice, especially sins of sexual misdeeds. Paradoxically she also was the patroness for forgiving sins of such misdeeds, and a purifier for sins and diseases caused by these sexual transgressions. These seemingly contradicting believes made her the goddess of purification, steam bath, midwives, filth and adulterers and appropriately as a statue of a woman giving birth. At the time these were interesting but not for long. It was promptly forgotten and ignored for ten years, sitting among my other memorabilia from my travels.  Recently when I was researching for Chemical weathering on buried nephrite jades, I came across the article, “The Dumbarton Oaks Tlazolteotl: looking beneath the surface “, by Jane MACLAREN WALSH, JOURNAL DE LA SOCIÉTÉ DES AMERICANISTATE, 2008, 94-1. “  (To read the article and to see a picture of the Dumbarton Oaks Tlazolteotl , click on the following link).   The Dumbarton Oaks Tlazolteotl was found to be made in the 19th century. The jadeite Tlazoteotl in my collection was taken out and looked at carefully under a 40X stereomicroscope. It is my belief that the existence of a jadeite Tlazolteotl and the finding on the statue deserve to be known. All of the descriptions and history of the Dumbarton Oaks Tlazolteotl are based on the detail study by Jane Maclaren Walsh in her article.


Comparison  of the Dumbarton Oaks Tlazolteotl and the jadeite Tlazolteotl.

The jadeite Tlazoteotl seen above, measures 14 cm in height, 8cm in width from side of knee to side of knee, and 8 cm front to back also taken from the level of her knees.  This makes the jadeite a smaller statue than the 20 cm tall Dumbarton Oaks.  It is made of a pale solid green jadeite. Unlike the Dumbarton Oaks Tlazoteotl which is in a sitting position, the jadeite Tlazoteotl is in a squatting position with her buttock above ground  squatting squarely on her feet. Also unlike the Dumbarton Oaks Tlazoteotl who has her neck extended, head tiled backward with a grimace expression, the jadeite Tlazoteotl faces forward with an expression of regret and sorrow, as if she is going to cry, a face of a woman in depression. (See below fig. 3). Both her eyes and nostrils are irregular comparing to the Dumbarton Oaks Tlazoteotl. She has higher cheek bones, thicker lips

Fig 3
Fig 3 jadeite Tlazoteotl face.

and prominent eyebrows. There is no drill hole on her. Her mouth gaps open with well defined teeth on her upper jaw and no teeth on the lower jaw, a difference from the Dumbarton Oaks Tlazoteotl that has well defined teeth on both the upper and lower jaw.  It is interesting that many of the Pre-Columbian jade masks in museums only have teeth on the upper jaw. The lower jaw either has no teeth, or represents by a smooth ridge, similar to the jadeite Tlazoteolt. Fig 4 below shows the mouth of the jadeite Tlazoteotl on the left as compare to an Olmec mask from the Latin American studies, on the right. Similar finding can be seen on the Olmec mask in the Metropolitan Museum of Art , and in the Boston Museum of Fine Art

On the body of the jadeite Tlazoteotl, like the Dumbarton Oaks Tlazoteotl, she has well defined clavicles. Unlike the Dumbarton Oaks Tlazoteotl that has well carved breasts with well inscribed nipples, the breasts on the jadeite Tlazoteotl are represented by two triangular masses with no nipples. Her knees are separated at 3 and 9 o’clock. Both hands are carved, holding her buttock. More differences are found between the infants of both statues.  The Dumbarton Oaks Tlazoteotl infant has a full headed of hair and well defined facial features resembling very much of an adult. The jadeite Tlazoteotl infant has no hair and less elaborate facial features. (Fig. 5)  Unlike his mother, his eyes are

Fig 5
Fig. 5 Jadeite infant

round, Both statues lower legs are angled backward, a very significant finding as to the positions they are in. The similarities between the statues give the impression that there is a relationship between the two statues. But the discrepancies are significant making it unlikely that they are copies of each others.


The birthing positions of Tlazoteotl 

The birthing positions of both statues in are unfamiliar to modern eyes. To understand the feasibility of the positions, I tried both positions myself. The jadeite squatting position (Fig. 6 ) was attempted first. Squatting down, the more I spread my legs the  

more I could keep my upper body upright. My lower legs angled automatically backward. If I squatted down too low, I tended to fall. By placing both of my hands underneath my buttock, I could actually lift my body slightly upward, and kept my balance. The jadeite squatting position is not only feasible, and placing both hands uner the buttock is a good way to stabilize oneself in that position.

Next I attempted the Dumbarton Oaks Tlazoteotl sitting position. ( See Fig. 3 in the Dumbarton Oaks Tlazoteotl article ). With myself sitting on the floor legs bent in front of me, I was unable to keep my upper body upright. The position forced me to lean backward. To support myself, I had to place both of my hands out on my sides and back. Placing my hands underneath my buttock was impossible. With my legs spread apart my lower legs bent angled forward. An attempt to bend my knees to angle my lower legs backward resulted in severe strain on both knees causing great pain. The biggest problem is the infant. In this position, as the infant emerges, his head will hit the ground, and the length of the baby will prevent him from coming out safely, unless the woman leans way back to almost flat on her back.  My conclusion is that the Dumbarton Oaks Tlazoteotl sitting position is not only impossible to obtain, but is also unsafe to give birth.

There are many versions of position to give birth today. The most common one is the woman lying on her back with her legs up spread wide apart, knees bent angling backward in stirrup.  This is a lying version of the squatting position. If you rotate the picture to put the woman’s body upright and feet down, you can see her actually is in a squatting position. The squatting position the jadeite Tlazoteotl in is a natural position to give safe birth. A woman can be in a sitting position when she is in labour. As soon as the infant is crowning, she has to go into the squatting position for delivery, especially if she is by herself.  Going into the wood by herself to give birth is a known American Indian women practice. The jadeite Tlazoteotl lacks the authoritarian, self confidence and commending  expression of nobility and goddess. Her expression shows psychological pain more so than physical, of a woman in depression, a phenomenon common during pregnancy before or after the delivery.  Such psychological trauma cannot be experienced by a man. The jadeite Tlazoteotl is more likely carved by a woman.  


Tool marks on the jadeite Tlazoteotl

The tool marks on the Dumbarton Oaks Tlazoteotl were thoroughly studied using Scanning Electron Microscopy on positive silicon impression technique. It iwas the tool mark study that confirmed the Dumbarton Oaks Tlazoteotl was carved in the 19th centaury. No sophisticated examination can be done on the jadeite Tlazoteolt . However examination under a 40X stereomicroscope can still yield insights into the statute. In her article, Jane MacLaren Walsh gives a detail account of Pre-Columbian lapidary technology. The tools used were essentially hard stones and various types of sand abrasives. The stone to be carved was first cut to size splitting with wood wedges,or cutting with lines or stone saws.  Techniques used for more detail carving were chipping, scrapping, grinding, filing, and piercing with solid pointed stones, all with stone tools and abrasives. Drilling were done with bamboo or bone. The surface was then polished with materials like wood and animal skins together with fine abrasives. With that in mind, lets look at the tool marks to see how the jadeite Tlazoteotl was carved. 

The first time when I picked up and looked at the jadeite Tlazoteotl, the feature that caught my eyes was these undulations that look like nodes on short intervals, on the surface of the arms. (Fig. 7 on the left picture below)  These result from chipping, or  sometimes called flinting.  An example of Neolithic knives on the right picture below shows such effect. The Neolithic carver used a sharp and hard stone tool like flint to

carve the knives. He stroked down at an angle towards the stone to be carved. As his tool hit the stone, he flicked his wrist to direct his tool upward, to avoid cutting too deep into the stone. This resulted in a shallow pit with raised edges, as seen on the stone knives. The jadeite Tlazoteotl carver then further scraped and grinded to rid of the roughness, and finally polished it into the arm. Ridges are left, giving the arm an unique look of the chipping.

The eyes of the jadeite Tlazoteotl also tell the story of how she was carved (Fig. 8).  Both eyes are almond shape, an indication that they are not drilled. The wall of the sockets

are carved straight down. The bottom of both eyes are uneven slopping up from the side to the center resulting in a small mound.  The carver used a chisel like stone tool pecking straight down on the side of the eye socket making a groove. He then went inside the eye , and with his tool slanting towards the groove on the side, he chiseled away the stone material to make the eye.  By repeating the chiseling, the stone material inside the eye eventually was all chiseled away leaving the eye formed as a void.  The result is an eye with a straight down socket wall, and a bottom sloping up from the side towards the center, as with the jadeite Tlazoteotl eyes. The eye then became a small pit, too deep for stone tools to scrape and grind and polish like he did with the arms, leaving the roughness and a small mound at the bottom.

The lines on the jadeite Tlazoteotl are crude and thick, most notably on lines that represents her hair (Fig. 9). The space between the lines are wide and uneven. The width

Fig 9)
Fig. 9. Hair

of the lines are inconsistent, with bulges at various part of the lines. The lines are filled with soil that I have not removed.  Through the exposed part and through the effect of the chemical weathering, thin scratch lines can be seen along the bottom, indicating that these lines are formed by scraping and or filing. All lines have a depth of about 2 mm.  There are frequent breakthrough and intrusion outside of the lines, more notably on her ears  (Fig. 10).  On her left ear, as the carver tried to make the line curve, and as he was

Fig. 10
Fig. 10 Left ear.

limited by his straight stone tools, to make the turn, he repeatedly file the same part of the line back and forth at a different angle, resulting in bulging of the line at the turn, and notches made by the tool going through outside the opposite side of the line. All the tool marks indicate that the jadeite Tlazoteotl was made with stone tools. The statue is not in good proportion. Her head, thighs and legs are too large for her body, and her arms too short.  She has a beauty of naiveté, often seen in Mesoamerican arts.


Chemical Weathering effects on the jadeite Tlazoteotl.

Appication of chemical weathering effects in Archaeology to my wishful thinking is in its infancy. In reality it probaly has not been born yet. Waiting to be recognized is that observing chemical weathering effects on buried lapidary is a great tool for Archaeology, espicially to idetify recently made forgeries. My experience with chemical weathering effect is with Chinese buried nephrite. The statute here is jadeite. Both nephrite, an amphibole, and jadeite, a pyroxene, are mafic minerals, meaning they both are silicates rich in magnesium and feric (iron).  According to scientific literatures, chemical weathering process for mafic minerals are similar, only with different secondary products produced, which can vary just by changing the location of the burial site. Changing the locality influences  greatly chemical weathering because the climate conditions are changed. Looking at the jadeite statue, the chemical weathering effect may not be exactly like that on nephrite, but they are certainly there on the statute surface.  

The first impression the jadeite statue gives is that it has two tones of color, a dark brownish color in the front, and a lighter to close to its original jadeite color on her sides and back. Black patches are on her, mostly on her front and on the infant. These are changes due to the chemical weathering effect. The main ingredient and driving force for chemical weathering is water. The amount of water available to certain part of the statue determines the amount of chemical weathering secondary products produced and that determines the color change. By looking at the color change on  the jadeite statue one can tell how she was buried. To see it, the statue is rotated to the position she was buried in with her face down.  A darker color on her face, knee and foot (Fig. 11), show roughly a water level.   The statue was buried facedown, as if she was in a puddle of

Fig. 11
Fig. 11. Rotated Jadeite statue to show the burial position.

water. More water was availble at the lower part of the soil resulting in more chemical weathering effect on the face and front of the statue.  Also noticable are lines as depressed groovs, retained water that produced secondary dark color products, making the lines appear black in color. This secondary product not only delineates the lines, but also form black patches, mostly on the front of the statue. The black color indicates that it probably is related to iron, likely an iron oxide hematite.  Looking through Olmac masks on line, the one in the Boston Museum of fine art, has similar black patches on his face.

Chemical weathering secondary products can be formed on the surface. When they form on the surface, a protonation layer where the chemical reaction took place, form. Figure 12 below shows a protonation layer covering the center mound and the wall of the socket on her right eye, as a solid blackish color layer, also seen in the recession above her eye.   Secondary products also form inside the surface micropores. As water can


Fig 12
Fig 12. Close up on the right eye showing the protonation layer covering the mound and the socket of the eye.

only penetrate to a very limited depth, secondary products form inside the micropores eventually behaves like a plug, causing further formed secondary products spilling onto the surface.  Figure 13 shows the secondary products inside the micropores appear as fine dots with a short length extending down. Because they form underneath the surface,

Fig 13
Fig. 13, Secondary products inside the micropores as fine dots.

they appear as if they were under water with a depth. Several kinds of minerals can be form as secondary products. In here most are black, probably an iron oxide, some have a metallic shine, and some have a greenish blue color, most likely a mineral containing copper. A larger patch of the bluish green mineral is found on the  inner wall of the right eye socket (Fig.14).

Fig. 14. Patch of blue green mineral inside the right eye socket.

Clay minerals as secondary product can form within the matrix of the jadeite between the jadeite crystals. It gives the jadeite a cloudy look as seen on Fig.13. As more secondary products form, the color change becomes more intense and with time, the color becomes solid giving a patina of the antique jade we all familiar with. Chemical weathering changes occur only within the surface 0.1 mm or so. The optical illusion is what gives the impression that the whole jade piece has changed into that particular color.

The Chinese fake jade makers actively simulate the chemical weathering effect on the jade surface. Such practice does not seem to occur in Latin America. Looking through the on line pictures of the Olmec masks, many of them do not seem to have a chemical weathering effect. They were made with various types of stone with no regard to the stone color of the original. The Chinese also use different types of stone. But always with a color similar to changes from chemical weathering.  To create the effect of Chemical weathering, they also use dye, usually with a color dark brown to black, and using heat and manipulating the PH of the solution to drive the dye into the nephrite to simulate the patina color. Such practice also does not seem to occur in Latin America.  To identify these forgeries the first thing to realize is that the dye comes down to inside the jade from above. In a natural chemical weathering process the secondary products are produced inside the micropores underneath and spill up to the surface. The dye goes into the jade surface through micro cracks. Under the microscope it shows up as thin lines next to a large patch of dye. In a natural chemical weathering process, the secondary products in the micropores show up as tiny dots frequently away from any large patch of dark chemical, as seen in figure 13.  The dye can also infiltrate into the matrix to give a cloudy look color change. Forgeries take a very short time, may be several days, to perform, comparing to the natural weathering process which takes several hundreds and may be thousands of years. Dye altered color change is uneven with areas with no dye showing color of the polished stone. Since the source of the changes come from the dye, large patch of dye on the surface has to be next to these changes. For the buried jade to show a matrix color change requires at least 500 years. The color change is more evenly distributed, and you may not see any dark patches or chemical on the surface.  Other techniques to make fake buried jade are using strong acid or alkaline to create a destructive burnt, easily identified under a microscope. Using sand blasting to make holes on the surface is also a frequent forgery trick. Contrary to  popular belief, holes on buried jade are not common. It can also be easily identified from natural etch pits under the microscope.

Chemical weathering can produce unusual mineral formation frequently found in drill holes. Reasons for this is drill holes can accumulate a large amount of water, and drilling also creates a large amount of fine granules that remains in a cave like space. Such fine granule when mix with water dissolves rapidly to provide substrate for subsequent chemical reactions. The space also provides a cave like environment for the minerals to develop.  The jadeite Tlazoteotl does not have drill holes. But both eyes are carved as voids providing a similar environment. We have already seen a patch of blue green mineral developed in her right eye (Fig.14). In her left eye, on the lower orbit wall, there is a tiny speck of mineral in bright orange color (Fig. 15). The nature of such mineral requires better expert assessment and explanation. Other unusual mineral found are

Fig. 15
Fig. 15 Orange mineral inside left eye.

hair like crystals inside her right eye (Fig. 16).  Similar hair like crystals are also found on buried nephrite. The exact nature of these are also unknown.  For an amateur there are

Fig. 16. Hair like crystals in right eye.


far too many unanswered questions in chemical weathering. Yet for certain it is a great tool. Its application awaits the scientific community’s exploration.



For many reasons the jadeite Tlazoteotl cannot be authenticated. It has no provenance. Buying it from a street peddler as a tourist is not one. We do know it is not an item made for the tourist trade, since for the last ten years no other jadeite Tlazoteotl was seen, sold to, or bought by a tourist. It is also not an item commissioned by a dealer to sell as an antique artifact for profit. There is no dealer involved, and 75 US dollars cannot even pay for a piece of raw jadeite mineral of similar size. But there has not been a scientific research done on the statute.  Looking at pictures on line cannot be counted as one. Top it all, the account is given by an amateur whose experience with Mesoamerican artifacts is limited to one, a number not a statistic.  That the statute is Aztec, and may even be its very existence, are at best questionable. However for a meaningful discussion these two assumptions are required.

If the jadeite statue is Aztec, then is the Dumbarton Oaks Tlazoteotl a copy of the jadeite Tlazoteotl?  To answer this we must first find out where the  Dumbarton Oaks Tlazoteotl was carved. We know that the  Dumbarton Oaks Tlazoteotl was carved in the 19th century with power tools. Mexico started electricity in 1879 in Leon. It was privately owned for the textile industry, and electricity was not available to the general public until early 20th century. The Dumbarton Oaks Tlazoteotl therefore could not have been carved in Mexico. Electricity was available to the general public in Paris in 1881, and promptly spread to all segments of the society. Since all power tolls at that time needed to be invented, they had to be the most sophisticated tools available. The  Dumbarton Oaks Tlazoteotl could only be carved after 1881 in Paris, by an European artisan with an ability to carve an exact copy of the original. But the discrepancies between the two statues are too great to be an exact copy. So how did the Dumbarton Oaks Tlazoteotl come into being? To answer that we need to go back to the very beginning of the  Dumbarton Oaks Tlazoteotl story, described in detail in the Walsh article.

The story is confusing because of so many characters involved. To see clearly, all questionable characters need to be eliminated, leaving those for certain involved. The most important character was Eugène Boban Duverge (1834-1908), a French antiquarian with credentials as the official archeologist in the Mexican royal court, a member of the French Scientific Commission in Mexico, and a dealer of Mesoamerican relics in Paris.  The first description of the Dumbarton Oaks Tlazoteotl was in a note hand written by him on May 28, 1883. He also mentioned that the statue was brought in by M. Damour, a mineralogist from the Academy of Science for consultation, and Damour bought the statue from a Mr. Wan who bought it in an auction. The Mr. Wan part of the story was discredited by Walsh in her article. That puts the M. Damour part of the story in question. Hamy, the president of the Paris Amercanist Society, in his 1907 article did mention that the statue was acquired by M. Damour with no mention of where Damour obtained the statue from. In his earlier writing in 1899, Hamy wrote he saw the Statue earlier in Eugène Boban ‘s antique shop, confirming that Eugène Boban was the one selling it. It further put in question that the statue was brought in by Damour to Eugène Boban for consultation. Since Damour was a mineralogist, the reverse may be the truth. Also if Damour did not buy it from Mr. Wan, the only one he could have gotten it from would be Eugène Boban. Eugène Boban was likely the owner of the  Dumbarton Oaks Tlazoteotl from the very first beginning.

The most likely scenery of the story is that Eugène Boban commissioned the carving of the Dumbarton Oaks Tlazoteotl, and sold it to Damour in Paris as a genuine Mesoamerican artefact. Eugène Boban had a history of selling known forgeries as genuine artifacts in the Paris antique market, notably the three 19th century made crystal skulls. To carve and made the Dumbarton Oaks Tlazoteotl he must have the knowledge of the existence of such a statue. But all indication he did not see the original. As a well respected and powerful French antiquarian with credential in the Mexican royal court, in 19th century at the height of colonialism in central America, if Eugène Boban saw the original statue, he would have processed it, and if he processed it, he would have sold it in the Paris market like he did with so many genuine Mesoamerican artifacts. The fact that he did not sell an original means he could not have seen it. But if he did not see an original, how could the Dumbarton Oaks Tlazoteotl come into being. Eugène Boban came to Mexico as a teenager. He not only could speak fluent Spanish, he self taught and knew Nahuatl, an Aztec and their descendant language.  That means he not only was able to communicate with the Aztec descendants, he also had a very good relationship with them.  Also for certain, he was actively inquiring about Mesoamerican artifacts for acquisition. The existence of such a statue was related to him by the Aztec descendants. A picture based on an oral legend was drawn. The picture was the blue print for the Dumbarton Oaks Tlazoteotl, resulting in the similarities and discrepancies of the two statues.

Mysteries are wonderful. The only draw back is there may not be an answer to satisfy everyone. 







Nephrite Jade – Radix Cultura

Nephrite Jade – Radix Cultura

Edmund Ho M. D. (

Chinese culture formation can be traced back to the early Neolithic time (7000BC-5000BC). Nephrite jade appeared early in the Chinese culture as a media, expressing the essence of religion, power and wealth of the Hongshan,  Lingzhu and Lingiatan societies. The importance of the nephrite jade continued on to the subsequent dynasties, forming the root of the Chinese culture. Even till today jade still occupies an important position in China. Such importance creates value. Unfortunately value creates problem. Even as early as the Song dynasty (960 – 1279) imitation and counterfeit jade pieces of previous time were found. In today China, with the advance of technology, counterfeit antique jades become rampant to such a degree that real and unreal become blur.  On the internet, in many books and videos, identified as reference materials, all you can see are fakes. It is a cultural tragedy when so many people do not know or have a wrong  concept of what a Hongshan or Shan, Zhou jade should look like, a loss of cultural identity. The chaos  is because there is no true scientific method to identify the true period of  jade. Such deficiency and the profit that can come out of it is what creates the tumult. But is it impossible to identify the genuine antique nephrite jade of their period? The answer lies in knowing and understanding the process of chemical weathering. All rocks and minerals undergo the weathering process in nature. Jade when they are buried will be no exception. To try to understand the process, I went through many articles  from major research in the world, on the subject of amphibole chemical weathering. Eventually it makes sense to me. Using a 40X magnification stereomicroscope, such effect can be seen clearly on the jade surface.  Noting the chemical weathering changes and the tool marks left on the jade surface, makes identification possible.  This site will deal into the amphibole chemical weathering process, and how to utilize it as one of the tools to authenticate  antique Chinese jade. Chemical weathering changes on antique nephrite jade has only recently been looked into. Hopefully this blog can stimulate interest and discussion. All criticism and suggestions are welcome. Please send to my email address

Nephrite fundamental


Shang Dynasty ( 1766 -1122 BC )

Jade is a beautiful gem stone. With its smooth luxurious texture, glossy semi transparent appearance, top it with a pleasant white or green color, jade has been part of the Chinese culture since the Neolithic time. From the very early on, it was regarded as a stone with mystic power and the medium of choice for religious expression.   The association with religion also brought on the representation and association with power and wealth. This deep affection and the belief in the  mystic power of jade linger on turning into thinking that jade cannot deteriorate even after several thousands years of burial. In a sense it is true. Jade pieces survive several thousands of years, much better than  many other materials of the same period of time. But the deterioration is there if one looks. It is this deterioration that nature left on the jade surface that gives clues to the authenticity of the period the jade piece was carved. To understand these changes, one must know some fundamentals of the nephrite jade.

                              nephrite rich in iron                       nephrite rich in magnisium

The two different types of jade are nephrite and jadeite. Jadeite is not native to China and did not  come into China from Myanmar until the Ming dynasty. All jade pieces before the Ming dynasty are nephrite. Both jadeite and nephrite are minerals. Jadeite belongs to the pyroxene group, and nephrite belongs to the amphibole group. Both are inosilicate minerals, meaning they are silicate groups containing silicon and oxygen. They form prism or needle like crystals and contain iron and magnesium in their structure. Nephrite is a combination of two amphibole minerals, tremolite and actinolite in various ratio.  Tremolite and actinolite are both calcium magnesium iron silicate with traces of sodium and aluminum.  They share the same chemical formula, Ca²(Mg,Fe)5Si8O22(OH)², and similar physical properties with specific gravity of 2.95 (+.15, -.05). Both actinolite and tremolite have a hardness of Mosh scale 5.5 – 6, and nephrite has a Mosh scale 6 – 6.5.  The color of tremolite are white, grey, black, yellow, green, pink and purple. The pink and purple varieties are mainly found in Lawrence county New York and are not found in China. Tremolite is white when there is more magnesium in its composition, and green when there is more iron. Iron is what gives the jade yellow to green color.  Actinolite is iron rich with color of various shade of green to black. In nephrite, when the ratio of the magnesium rich tremolite is higher than the iron rich actinolite, it is white. Both of the above two samples are nephrite roughs. On the left is iron rich and green. On the right is magnesium rich and white. Today any nephrite with 90% magnesium rich tremolite, and therefore has a greasy white mutton fat color, is called Hetian regardless where it comes from.

                                  Actinolite rough                                       Tremolite rough


Minerals form crystals. The nephrite crystals are interlocking fibrous needles, bound together radiating out in a fan like fashion. The space between the bundles is the cleavage. which in nephrite is in two directions at about 60 and 120 degrees angles. The actinolite and tremolite specimens above show the crystal arrangement with the fibrous bundles radiating out. Because the crystals are bound tightly together interlacing, nephrite does not break easily. They are however easily cracked and separate at the cleavage. The interrelationship of the nephrite crystals are shown below in the scanning electron microscopy photos (Photos taken by Yi Bao

Nephrite crystal
Nephrite crystals under SEM


Rocks and minerals have a micro pore system, a system of minute openings on the surface between crystal and grain of the mineral. Pores extend down ward in pore throats, an interconnected passage way like channels that follow the cleavage of the mineral.  Micro cracks also occur parallel or against the cleavage. The opening of these micro pores have a width of 1-2 μ. As weathering progress, the micro cracks widen to 5-10 μ. Water in the environment entering these micro pores and micro cracks, and reacting with the amphibole is the main aspect of chemical weathering. It is inside this system weathering changes take place. Below is a picture of the micro pores .  More details on the micro pore system can also be obtained from this link.  

Pore system
Various mineral micro pore system


Gem minerals including nephrite form inside the crust of the Earth, with the only exceptions of peridot and diamond  which form in the mantle.  Under high temperature and pressure of the earth crust, nephrite is formed by metasomatism of dolomite by intrusive magmatic fluids, or silicic rocks by serpentinite fluids. This results in nephrite being encased in igneous and or metamorphic rocks, mixed with small amount of other minerals, diopside, magnetite, chromite, graphite, apatite, rutile, pyrite, datolite, vesuvianite, prehnite, garnet, talc and sphene.   In China, nephrite from the Kunlun mountains are frequently associate with Pyroxene rocks, and those from the Karakash valley in Xinjiang province are frequently with Hornblende rocks.  Thus nephrite are encased in other rocks making them difficult to identify. Nephrite in the primary deposit are deep underground, encased in rocks and therefore  in general are not mined  due to the expense of necessity to remove millions tons of rocks to obtain the mineral.  With volcanic and tectonic activities, part of the primary deposit breaks off and uplifted to the surface from the crust to become the secondary deposit.  There are two types of secondary deposit, eluvial and alluvial. As the  deposit is pushed to the surface, weathering breaks down the hard encasing rocks and becomes a mount of debris with the mineral inside, forming the eluvial deposit. Nephrite mostly come from such mines probably exclusively before the Qing Dynasty. Within these mines nephrite are found encased within other minerals and rocks (坑玉).  Identifying rocks that contain nephrite within can post challenges to nephrite miners and hunters.

Nephrite encased in crust.

 Alluvial is when the primary or secondary deposit further erodes, broken off and finds its way tumbling down a river or stream. Way to obtain the mineral is usually by panning, as in panning for gold, or dredging in a larger scale mining. Minerals can also be found in dry up river beds. In such case hydraulic washing is the way to obtain them. Nephrite pebbles in rivers are found among similar size pebbles and rocks, making them unsuitable for panning. To mine such river pebbles traditionally in China, several people walk abreast, wading across the shallow river. As they wade across, they feels the pebbles on the river bed with their feet. Experience tells them which pebble to pick up for examination. However some believe that it is more accurate to say when wadding across they look down to pick up what looks like a nephrite pebble. River nephrite pebbles are less angular, smooth, polish and smaller due to constant rolling and tumbling in the stream. Most of the pebbles have areas of reddish and other discoloration called skin. The recent high demand of nephrite jade in China has basically exhausted the Xinjiang deposits.  With unabated demands price of nephrite pebbles sky rocketed. Escalating high price brings out fake nephrite pebbles. How to identify the fake from the real nephrite pebbles becomes a problem. China in  2015 puts out a paper title “Identification Characteristics of Weathering Crust for Nephrite Gravel and its Imitation. Hui Li , Xuan Wang, Yong Zhu, Zhengyu Zhou. 5th International Conference on Information Engineering for Mechanics and Materials (ICIMM 2015)”. In the paper the authors identify three distinct points of difference between the nephrite pebbles natural weathering from the artificial applied changes.

  • Something resembling sweat pores are found on the surface of the natural weathered pebbles.  These sweat pores are irregular, varied in shape and sizes, with some of these sweat pores connected, and some have smaller sweat pores within a larger one with the appearance of an island. These sweat pores are thought to come from collision with other pebbles and rocks in the stream. The artificial sweat pores are made from sand blasting, and the pores are uniform in size and shape with edges round and smooth, unlike the natural sweat pores.
  • Nail pattern formation on the natural weathered pebbles. These pattern are  thought to be from the nephrite breaking from he primary deposit and collision in the stream. The artificial ones are more smooth and uniform.
  • Artificial color changes on the crust of the false nephrite pebbles are done by applying chemical on the surface, and hence they are brighter in color. Using ultraviolet-visible absorption spectroscopy, the absorption peak of the color changes on the natural nephrite pebbles  show iron oxides F²-, F³-, whereas the applied color changes on the false pebbles do not contain any iron.

The sweat pores described by the authors are also seen on the buried nephrite jades. From the description, these should be etch pits result from natural chemical weathering, and not from the collision with other pebbles as stated. Nephrite is probably the hardest pebble in the stream. If they collide with other stones, they are more likely to crack than to chip.  Weathering produces etch pits on nephrite surface with characteristics similar to what the paper describe. It is safe to say the pits found on the pebble are etch pits from weathering. It is hard to know what the authors refer to as the nail pattern. From the picture in the article, it seems to refer to the dendritic changes under the nephrite surface. The iron oxide formation is also seen in  buried antique nephrite. Like all minerals and rocks, the nephrite pebbles also go through chemical weathering in nature. The three observations to identify the natural nephrite pebbles from the false ones are similar to the observations used to identified the burial nephrite jade from the fake ones. These surface changes are the result of natural chemical weathering of amphibole which we are going to explore next.